• Large Scale Production and Downstream Processing of Labyrinthopeptins from the Actinobacterium .

      Rupcic, Zeljka; Hüttel, Stephan; Bernecker, Steffen; Kanaki, Sae; Stadler, Marc; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2018-06-05)
      A method was established for the production of 1.2-fold and 4.2-fold increased amounts of the antiviral and central nervous system-active lantipeptides, labyrinthopeptins A1 and A2, respectively, isolated from the actinobacterium
    • Two New Cyathane Diterpenoids from Mycelial Cultures of the Medicinal Mushroom Hericium erinaceus and the Rare Species, Hericium flagellum.

      Rupcic, Zeljka; Rascher, Monique; Kanaki, Sae; Köster, Reinhard W; Stadler, Marc; Wittstein, Kathrin; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2018-03-06)
      Basidiomycetes of the genusHericiumare among the most praised medicinal and edible mushrooms, which are known to produce secondary metabolites with the potential to treat neurodegenerative diseases. This activity has been attributed to the discovery of various terpenoids that can stimulate the production of nerve growth factor (NGF) or (as established more recently) brain-derived neurotrophic factor (BDNF) in cell-based bioassays. The present study reports on the metabolite profiles of a Lion's Mane mushroom (Hericium erinaceus) strain and a strain of the rare species,Hericium flagellum(synonymH. alpestre). While we observed highly similar metabolite profiles between the two strains that were examined, we isolated two previously undescribed metabolites, given the trivial names erinacines Z1 and Z2. Their chemical structures were elucidated by means of nuclear magnetic resonance (NMR) spectroscopy and high resolution mass spectrometry. Along with six further, previously identified cyathane diterpenes, the novel erinacines were tested for neurotrophin inducing effects. We found that erinacines act onBDNF, which is a neurotrophic factor that has been reported recently by us to be induced by the corallocins, but as well onNGFexpression, which is consistent with the literature.
    • Novel and interesting Ophiocordyceps spp. ( Ophiocordycipitaceae , Hypocreales ) with superficial perithecia from Thailand

      Luangsa-ard, J.; Tasanathai, K.; Thanakitpipattana, D.; Khonsanit, A.; Stadler, M.; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2018-03)
    • Six Heterocyclic Metabolites from the Myxobacterium Labilithrix luteola.

      Mulwa, Lucky S; Jansen, Rolf; Praditya, Dimas F; Mohr, Kathrin I; Wink, Joachim; Steinmann, Eike; Stadler, Marc; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2018-02-28)
      Two new secondary metabolites, labindole A [2-methyl-3-(2-nitroethyl)-3H-indole] (1) and labindole B [2-methyl-3-(2-nitrovinyl)-3H-indole] (2), were isolated from the myxobacteriumLabilithrixluteola(DSM 27648T). Additionally, four metabolites3,4,5and6already known from other sources were obtained. Their structures were elucidated from high resolution electrospray ionisation mass spectrometry (HRESIMS) and 1D and 2D nuclear magnetic resonance (NMR) spectroscopy data and their relative configuration was assigned based on nuclear Overhauser effect (NOE) and vicinal ¹H-NMR coupling data. The compounds where tested for biological activities; labindoles A (1) and B (2) exhibited significant activity against Hepatitis C Virus, 9H-carbazole (3), 3-chloro-9H-carbazole (4) and 4-hydroxymethyl-quinoline (5) showed antifungal activities. Moreover, compound3had weak to moderate antibacterial activities, while labindoles A (1) and B (2) were devoid of significant antifungal and antibacterial effects.
    • Aethiopinolones A-E, New Pregnenolone Type Steroids from the East African Basidiomycete Fomitiporia aethiopica.

      Chepkirui, Clara; Sum, Winnie C; Cheng, Tian; Matasyoh, Josphat C; Decock, Cony; Stadler, Marc; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2018-02-09)
      A mycelial culture of the Kenyan basidiomyceteFomitiporia aethiopicawas fermented on rice and the cultures were extracted with methanol. Subsequent HPLC profiling and preparative chromatography of its crude extract led to the isolation of five previously undescribed pregnenolone type triterpenes1-5, for which we propose the trivial name aethiopinolones A-E. The chemical structures of the aethiopinolones were determined by extensive 1D- and 2D-NMR, and HRMS data analysis. The compounds exhibited moderate cytotoxic effects against various human cancer cell lines, but they were found devoid of significant nematicidal and antimicrobial activities.
    • Aethiopinolones A-E, New Pregnenolone Type Steroids from the East African Basidiomycete Fomitiporia aethiopica.

      Chepkirui, Clara; Sum, Winnie C; Cheng, Tian; Matasyoh, Josphat C; Decock, Cony; Stadler, Marc; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2018-02-09)
      A mycelial culture of the Kenyan basidiomycete Fomitiporia aethiopica was fermented on rice and the cultures were extracted with methanol. Subsequent HPLC profiling and preparative chromatography of its crude extract led to the isolation of five previously undescribed pregnenolone type triterpenes 1–5, for which we propose the trivial name aethiopinolones A–E. The chemical structures of the aethiopinolones were determined by extensive 1D- and 2D-NMR, and HRMS data analysis. The compounds exhibited moderate cytotoxic effects against various human cancer cell lines, but they were found devoid of significant nematicidal and antimicrobial activities. View Full-Text
    • Elsinopirins A-D, Decalin Polyketides from the Ascomycete Elsinoё pyri.

      Surup, Frank; Pommerehne, Kathrin; Schroers, Hans-Josef; Stadler, Marc; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2018-02-05)
      In course of our screening for new secondary metabolites from ecological niche specialized, phytopathogenic fungi, the plant pathogenElsinoё pyri, strain 2203C, was found to produce four novel compounds (1-4), which were named elsinopirins A-D, in addition to the known metabolite elsinochrome A (5). After isolation by preparative high-performance liquid chromatography (HPLC), their structures, including relative stereochemistry, were elucidated by 1D and 2D nuclear magnetic resonance (NMR) and mass spectrometry (MS) data. Finally, absolute stereochemistry was assigned by chemical shifts of Mosher's esters (α-methoxy-α-trifluoromethylphenylacetic acid; MTPA) derivatives of elsinopirin B (2). The compounds were found to be devoid of significant antibacterial, antifungal, and cytotoxic activities.
    • Acetyl-CoA carboxylase 1 regulates endothelial cell migration by shifting the phospholipid composition.

      Glatzel, Daniel K; Koeberle, Andreas; Pein, Helmut; Löser, Konstantin; Stark, Anna; Keksel, Nelli; Werz, Oliver; Müller, Rolf; Bischoff, Iris; Fürst, Robert; HIPS, Helmholtz-Institute für pharmazeutische Forschung Saarland, Universitätscampus E8.1, 66123 Saarbrücken, Germany. (2018-02)
      The enzyme acetyl-CoA carboxylase (ACC) plays a crucial role in fatty acid metabolism. In recent years, ACC has been recognized as a promising drug target for treating different diseases. However, the role of ACC in vascular endothelial cells (ECs) has been neglected so far. To characterize the role of ACC, we used the ACC inhibitor, soraphen A, as a chemical tool, and also a gene silencing approach. We found that ACC1 was the predominant isoform in human umbilical vein ECs as well as in human microvascular ECs and that soraphen A reduced the levels of malonyl-CoA. We revealed that ACC inhibition shifted the lipid composition of EC membranes. Accordingly, membrane fluidity, filopodia formation, and migratory capacity were reduced. The antimigratory action of soraphen A depended on an increase in the cellular proportion of PUFAs and, most importantly, on a decreased level of phosphatidylglycerol. Our study provides a causal link between ACC, membrane lipid composition, and cell migration in ECs. Soraphen A represents a useful chemical tool to investigate the role of fatty acid metabolism in ECs and ACC inhibition offers a new and valuable therapeutic perspective for the treatment of EC migration-related diseases.
    • New nematicidal and antimicrobial secondary metabolites from a new species in the new genus, .

      Rupcic, Zeljka; Chepkirui, Clara; Hernández-Restrepo, Margarita; Crous, Pedro W; Luangsa-Ard, Janet Jennifer; Stadler, Marc; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2018-01-01)
      During the course of a study on the functional biodiversity of the mycobiota inhabiting rainforests in Thailand, a fungal strain was isolated from a plant sample and shown to represent an undescribed species, as inferred from a combination of morphological and molecular phylogenetic methods. Molecular phylogenetic analyses, based on four DNA loci, revealed a phylogenetic tree with the newly generated sequences clustering in a separate branch, together with members of the Sulcatisporaceae (Pleosporales, Ascomycota). The Thai specimen morphologically resembled
    • New nematicidal and antimicrobial secondary metabolites from a new species in the new genus, .

      Rupcic, Zeljka; Chepkirui, Clara; Hernández-Restrepo, Margarita; Crous, Pedro W; Luangsa-Ard, Janet Jennifer; Stadler, Marc; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2018-01-01)
      During the course of a study on the functional biodiversity of the mycobiota inhabiting rainforests in Thailand, a fungal strain was isolated from a plant sample and shown to represent an undescribed species, as inferred from a combination of morphological and molecular phylogenetic methods. Molecular phylogenetic analyses, based on four DNA loci, revealed a phylogenetic tree with the newly generated sequences clustering in a separate branch, together with members of the Sulcatisporaceae (Pleosporales, Ascomycota). The Thai specimen morphologically resembled
    • Two novel species of (Parabambusicolaceae, Pleosporales) with their phoma-like asexual morphs.

      Phukhamsakda, Chayanard; Bhat, Darbhe J; Hongsanan, Sinang; Xu, Jian-Chu; Stadler, Marc; Hyde, Kevin D; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2018-01-01)
      The monotypic genus
    • Bioactive Compounds Produced by Hypoxylon fragiforme against Staphylococcus aureus Biofilms.

      Yuyama, Kamila Tomoko; Chepkirui, Clara; Wendt, Lucile; Fortkamp, Diana; Stadler, Marc; Abraham, Wolf-Rainer; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2017-12-12)
      Treating infections organized in biofilms is a challenge due to the resistance of the pathogens against antibiotics and host immune cells. Many fungi grow in a wet environment, favorable for the growth of bacterial biofilms, and we speculated that fungi possess some strategies to control these bacterial biofilms. A fungus identified as Hypoxylon fragiforme, was collected in the Harz Mountains, Germany, and its mycelial culture was fermented in different culture media for 67 days to test its biological potential against bacterial biofilms. Sclerin, sclerin diacid and its 3-methyl monoester (methyl 1-(5-hydroxy-6-carboxylic-2,3,4-trimethylphenyl) propionate) are here described for the first time from this fungus. Sclerin and its diacid interfered with the biofilm formation of the pathogen Staphylococcus aureus, inhibiting 86% and 80% of the biofilm at 256 μg mL-1, respectively, but not killing the bacterium. Interestingly, the monomethylester of sclerin diacid was inactive. Although these compounds did not possess any activity against a pre-formed biofilm, they prevented its formation at subtoxic concentrations. Furthermore, sclerin and its diacid displayed a high specificity against Staphylococcus aureus, indicating a good strategy against pathogenic biofilms when combined with antibiotics.
    • Taxonomic analyses of members of the Streptomyces cinnabarinus cluster, description of Streptomyces cinnabarigriseus sp. nov. and Streptomyces davaonensis sp. nov.

      Landwehr, Wiebke; Kämpfer, Peter; Glaeser, Stefanie P; Rückert, Christian; Kalinowski, Jörn; Blom, Jochen; Goesmann, Alexander; Mack, Matthias; Schumann, Peter; Atasayar, Ewelina; Hahnke, Richard L; Rohde, Manfred; Martin, Karin; Stadler, Marc; Wink, Joachim; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2017-12-11)
      Roseoflavin is the only known riboflavin (vitamin B2) analog with antibiotic properties. It is actively taken up by many micro-organisms and targets flavinmononucleotide riboswitches and flavoproteins. It is described as the product of the tentatively named 'Streptomyces davawensis' JCM 4913. Taxonomic analysis of this strain with a polyphasic approach showed that it is very closely related to Streptomyces cinnabarinus (DSM 40467). The two Streptomyces isolates were obtained from different geographical locations (the Philippines and the Kamchatka Peninsula, respectively), their genomes have been sequenced and the question was whether or not the two isolates were representatives of the same species. As we also worked with another isolate of Streptomyces cinnabarinus JS 360, the producer of the cinnabaramides, we wanted to clarify the taxonomic position of the three isolates by using a polyphasic approach. After analysis of the 16S rRNA gene sequence, we found in total 23 species of the genus Streptomyces that showed a similarity higher than 98.5 % to the three strains. We showed that 'S. davawensis' JCM 4913 and S. cinnabarinus DSM 40467 were very closely related but belong to two different species. Hence, we validate 'S. davawensis' as Streptomyces davaonensis sp. nov. with the type strain JCM 4913T (=DSM 101723T). In addition, the cinnabaramide producer can be clearly differentiated from S. davaonensis and this isolate is described as Streptomyces cinnabarigriseus sp. nov. with strain JS360T (=NCCB 100590T=DSM 101724T) as the type strain.
    • Monocillium gamsii sp. nov. and Monocillium bulbillosum: two nematode-associated fungi parasitising the eggs of Heterodera filipjevi

      Ashrafi, Samad; Stadler, Marc; Dababat, Abdelfattah A.; Richert-Pöggeler, Katja R.; Finckh, Maria R.; Maier, Wolfgang; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr.7, 38124 Braunschweig, Germany. (2017-10-25)
    • Furanones and Anthranilic Acid Derivatives from the Endophytic Fungus Dendrothyrium variisporum.

      Teponno, Rémy B; Noumeur, Sara R; Helaly, Soleiman E; Hüttel, Stephan; Harzallah, Daoud; Stadler, Marc; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2017-10-09)
      Extracts from an endophytic fungus isolated from the roots of the Algerian plant Globularia alypum showed prominent antimicrobial activity in a screening for novel antibiotics. The producer organism was identified as Dendrothyrium variisporum by means of morphological studies and molecular phylogenetic methods. Studies on the secondary metabolite production of this strain in various culture media revealed that the major components from shake flasks were massarilactones D (1) and H (2) as well as two new furanone derivatives for which we propose the trivial names (5S)-cis-gregatin B (3) and graminin D (4). Scale-up of the fermentation in a 10 L bioreactor yielded massarilactone D and several further metabolites. Among those were three new anthranilic acid derivatives (5-7), two known anthranilic acid analogues (8 and 9) and three cyclopeptides (10-12). Their structures were elucidated on the basis of extensive spectroscopic analysis (1D- and 2D-NMR), high-resolution mass spectrometry (HRESIMS), and the application of the modified Mosher's method. The isolated metabolites were tested for antimicrobial and cytotoxic activities against various bacteria, fungi, and two mammalian cell lines. The new Metabolite 5 and Compound 9 exhibited antimicrobial activity while Compound 9 showed cytotoxicity activity against KB3.1 cells.
    • Optimization of the biotechnological production of a novel class of anti-MRSA antibiotics from Chitinophaga sancti.

      Beckmann, Amelie; Hüttel, Stephan; Schmitt, Viktoria; Müller, Rolf; Stadler, Marc; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2017-08-17)
      Recently, the discovery of the elansolids, a group of macrolides, was reported. The molecules show activity against methicillin-resistant Staphylococcus aureus as well as other gram-positive organisms. This fact renders those substances a promising starting point for future chemical development. The active atropisomers A1/A2 are formed by macrolactonization of the biosynthesis product A3 but are prone to ring opening and subsequent formation of several unwanted side products. Recently it could be shown that addition of different nucleophiles to culture extracts of Chitinophaga sancti enable the formation of new stable elansolid derivatives. Furthermore, addition of such a nucleophile directly into the culture led exclusively to formation of a single active elansolid derivative. Due to low product yields, methods for production of gram amounts of these molecules have to be established to enable further development of this promising compound class.
    • Myxobacteria in high moor and fen: An astonishing diversity in a neglected extreme habitat.

      Mohr, Kathrin I; Zindler, Tanja; Wink, Joachim; Wilharm, Elke; Stadler, Marc; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2017-08)
      Increasing antibiotic resistances of numerous pathogens mean that myxobacteria, well known producers of new antibiotics, are becoming more and more interesting. More than 100 secondary metabolites, most of them with bioactivity, were described from the order Myxococcales. Especially new myxobacterial genera and species turned out to be reliable sources for novel antibiotics and can be isolated from uncommon neglected habitats like, for example, acidic soils. Almost nothing is known about the diversity of myxobacteria in moors, except some information from cultivation studies of the 1970s. Therefore, we evaluated the myxobacterial community composition of acidic high moor and fen both with cultivation-independent 16S rRNA clone bank analysis and with cultivation. Phylogenetic analyses of clone sequences revealed a great potential of undescribed myxobacteria in high moor and fen, whereby all sequences represent unknown taxa and were detected exclusively by cultivation-independent analyses. However, many clones were assigned to sequences from other cultivation-independent studies of eubacterial diversity in acidic habitats. Cultivation revealed different strains exclusively from the genus Corallococcus. Our study shows that the neglected habitat moor is a promising source and of high interest with regard to the cultivation of prospective new bioactive secondary metabolite producing myxobacteria.
    • Akanthopyrones A-D, α-Pyrones Bearing a 4-O-Methyl-β-d-glucopyranose Moiety from the Spider-Associated Ascomycete Akanthomyces novoguineensis.

      Kuephadungphan, Wilawan; Helaly, Soleiman E; Daengrot, Charuwan; Phongpaichit, Souwalak; Luangsa-Ard, Janet Jennifer; Rukachaisirikul, Vatcharin; Stadler, Marc; Helmholtz Centre for infection research, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2017-07-18)
      Hypocrealean fungi have proved to be prolific bioactive metabolite producers; they have caught the attention of mycologists throughout the world. However, only a few studies on the insect and spider parasitic genus Akanthomyces have so far been carried out. In this study, we report the isolation, structural elucidation and biological activities of four unprecedented glycosylated α-pyrone derivatives, akanthopyrones A-D (1-4), from a culture of Akanthomyces novoguineensis collected in Thailand. The chemical structures of the akanthopyrones were determined by extensive 1D- and 2D-NMR, and HRMS spectroscopic analysis. Their absolute configurations were determined. Akanthopyrone A (1) exhibited weak antimicrobial activity against Bacillus subtilis DSM10 and cytotoxicity against the HeLa cell line KB-3-1, while akanthopyrone D (4) showed weak activity against Candida tenuis MUCL 29892.
    • Five Unprecedented Secondary Metabolites from the Spider Parasitic Fungus Akanthomyces novoguineensis.

      Helaly, Soleiman E; Kuephadungphan, Wilawan; Phongpaichit, Souwalak; Luangsa-Ard, Janet Jennifer; Rukachaisirikul, Vatcharin; Stadler, Marc; Helmholtz Centre for infection research, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2017-06-14)
      Five new compounds including the glycosylated β-naphthol (1, akanthol), a glycosylated pyrazine (2, akanthozine), and three amide derivatives including a hydroxamic acid derivative (3-5) were isolated from the spider-associated fungus Akanthomyces novoguineensis (Cordycipitaceae, Ascomycota). Their structures were elucidated by using high resolution mass spectrometry (HRMS) and NMR spectroscopy. In this study, the antimicrobial, cytotoxic, anti-biofilm, and nematicidal activities of the new compounds were evaluated. The distribution pattern of secondary metabolites in the species was also revealed in which more isolates of A. novoguineensis were encountered and their secondary metabolite profiles were examined using analytical HPLC with diode array and mass spectrometric detection (HPLC-DAD/MS). Remarkably, all isolated compounds are specifically produced by A. novoguineensis.
    • Resurrection and emendation of the Hypoxylaceae, recognised from a multigene phylogeny of the Xylariales

      Wendt, Lucile; Sir, Esteban Benjamin; Kuhnert, Eric; Heitkämper, Simone; Lambert, Christopher; Hladki, Adriana I.; Romero, Andrea I.; Luangsa-ard, J. Jennifer; Srikitikulchai, Prasert; Peršoh, Derek; Stadler, Marc; Helmholtz Centre for infection research, Inhoffenstr. 7., 38124 Braunschweig, Germany. (2017-06-10)