• Bacterial Adaptation to the Host's Diet Is a Key Evolutionary Force Shaping Drosophila-Lactobacillus Symbiosis.

      Martino, Maria Elena; Joncour, Pauline; Leenay, Ryan; Gervais, Hugo; Shah, Malay; Hughes, Sandrine; Gillet, Benjamin; Beisel, Chase; Leulier, François; HIRI, Helmholtz-Institut für RNA-basierte Infektionsforschung, Josef-Shneider Strasse 2, 97080 Würzburg, Germany. (Elsevier, 2018-07-11)
      Animal-microbe facultative symbioses play a fundamental role in ecosystem and organismal health. Yet, due to the flexible nature of their association, the selection pressures that act on animals and their facultative symbionts remain elusive. Here we apply experimental evolution to Drosophila melanogaster associated with its growth-promoting symbiont Lactobacillus plantarum, representing a well-established model of facultative symbiosis. We find that the diet of the host, rather than the host itself, is a predominant driving force in the evolution of this symbiosis. Furthermore, we identify a mechanism resulting from the bacterium's adaptation to the diet, which confers growth benefits to the colonized host. Our study reveals that bacterial adaptation to the host's diet may be the foremost step in determining the evolutionary course of a facultative animal-microbe symbiosis.
    • Distinct timescales of RNA regulators enable the construction of a genetic pulse generator.

      Westbrook, Alexandra; Tang, Xun; Marshall, Ryan; Maxwell, Colin S; Chappell, James; Agrawal, Deepak K; Dunlop, Mary J; Noireaux, Vincent; Beisel, Chase L; Lucks, Julius; Franco, Elisa; HIRI, Helmholtz-Institut für RNA-basierte Infektionsforschung, Josef-Shneider Strasse 2, 97080 Würzburg, Germany. (Wiley-Blackwell, 2019-01-13)
      To build complex genetic networks with predictable behaviours, synthetic biologists use libraries of modular parts that can be characterized in isolation and assembled together to create programmable higher-order functions. Characterization experiments and computational models for gene regulatory parts operating in isolation are routinely employed to predict the dynamics of interconnected parts and guide the construction of new synthetic devices. Here, we individually characterize two modes of RNA-based transcriptional regulation, using small transcription activating RNAs (STARs) and CRISPR interference (CRISPRi), and show how their distinct regulatory timescales can be used to engineer a composed feedforward loop that creates a pulse of gene expression. We use a cell-free transcription-translation system (TXTL) to rapidly characterize the system, and we apply Bayesian inference to extract kinetic parameters for an ODE-based mechanistic model. We then demonstrate in simulation and verify with TXTL experiments that the simultaneous regulation of a single gene target with STARs and CRISPRi leads to a pulse of gene expression. Our results suggest the modularity of the two regulators in an integrated genetic circuit, and we anticipate that construction and modelling frameworks that can leverage this modularity will become increasingly important as synthetic circuits increase in complexity. This article is protected by copyright. All rights reserved.
    • The Francisella novicida Cas12a is sensitive to the structure downstream of the terminal repeat in CRISPR arrays.

      Liao, Chunyu; Slotkowski, Rebecca A; Achmedov, Tatjana; Beisel, Chase L; HIRI, Helmholtz-Institut für RNA-basierte Infektionsforschung, Josef-Shneider Strasse 2, 97080 Würzburg, Germany. (2018-10-12)
      The Class 2 Type V-A CRISPR effector protein Cas12a/Cpf1 has gained widespread attention in part because of the ease in achieving multiplexed genome editing, gene regulation, and DNA detection. Multiplexing derives from the ability of Cas12a alone to generate multiple guide RNAs from a transcribed CRISPR array encoding alternating conserved repeats and targeting spacers. While array design has focused on how to optimize guide-RNA sequences, little attention has been paid to sequences outside of the CRISPR array. Here, we show that a structured hairpin located immediately downstream of the 3' repeat interferes with utilization of the adjacent encoded guide RNA by Francisella novicida (Fn)Cas12a. We first observed that a synthetic Rho-independent terminator immediately downstream of an array impaired DNA cleavage based on plasmid clearance in E. coli and DNA cleavage in a cell-free transcription-translation (TXTL) system. TXTL-based cleavage assays further revealed that inhibition was associated with incomplete processing of the transcribed CRISPR array and could be attributed to the stable hairpin formed by the terminator. We also found that the inhibitory effect partially extended to upstream spacers in a multi-spacer array. Finally, we found that removing the terminal repeat from the array increased the inhibitory effect, while replacing this repeat with an unprocessable terminal repeat from a native FnCas12a array restored cleavage activity directed by the adjacent encoded guide RNA. Our study thus revealed that sequences surrounding a CRISPR array can interfere with the function of a CRISPR nuclease, with implications for the design and evolution of CRISPR arrays.