Recent Submissions

  • Efficient oral vaccination by bioengineering virus-like particles with protozoan surface proteins.

    Serradell, Marianela C; Rupil, Lucía L; Martino, Román A; Prucca, César G; Carranza, Pedro G; Saura, Alicia; Fernández, Elmer A; Gargantini, Pablo R; Tenaglia, Albano H; Petiti, Juan P; Tonelli, Renata R; Reinoso-Vizcaino, Nicolás; Echenique, José; Berod, Luciana; Piaggio, Eliane; Bellier, Bertrand; Sparwasser, Tim; Klatzmann, David; Luján, Hugo D; TWINCORE, Zentrum für experimentelle und klinische Infektionsforschung GmbH,Feodor-Lynen Str. 7, 30625 Hannover, Germany. (Springer-Nature, 2019-01-21)
    Intestinal and free-living protozoa, such as Giardia lamblia, express a dense coat of variant-specific surface proteins (VSPs) on trophozoites that protects the parasite inside the host's intestine. Here we show that VSPs not only are resistant to proteolytic digestion and extreme pH and temperatures but also stimulate host innate immune responses in a TLR-4 dependent manner. We show that these properties can be exploited to both protect and adjuvant vaccine antigens for oral administration. Chimeric Virus-like Particles (VLPs) decorated with VSPs and expressing model surface antigens, such as influenza virus hemagglutinin (HA) and neuraminidase (NA), are protected from degradation and activate antigen presenting cells in vitro. Orally administered VSP-pseudotyped VLPs, but not plain VLPs, generate robust immune responses that protect mice from influenza infection and HA-expressing tumors. This versatile vaccine platform has the attributes to meet the ultimate challenge of generating safe, stable and efficient oral vaccines.
  • C-X-C Motif Chemokine Receptor 4 Blockade Promotes Tissue Repair After Myocardial Infarction by Enhancing Regulatory T Cell Mobilization and Immune-Regulatory Function.

    Wang, Yong; Dembowsky, Klaus; Chevalier, Eric; Stüve, Philipp; Korf-Klingebiel, Mortimer; Lochner, Matthias; Napp, L Christian; Frank, Heike; Brinkmann, Eva; Kanwischer, Anna; Bauersachs, Johann; Gyongyosi, Mariann; Sparwasser, Tim; Wollert, Kai C; TWINCORE, Zentrum für experimentelle und klinische Infektionsforschung GmbH,Feodor-Lynen Str. 7, 30625 Hannover, Germany. (Lippinscott, Williams & Wilkins; American Heart Association, 2019-01-30)
    Acute myocardial infarction (MI) elicits an inflammatory response that drives tissue repair and adverse cardiac remodeling. Inflammatory cell trafficking after MI is controlled by C X-C motif chemokine ligand 12 (CXCL12) and its receptor, C-X-C motif chemokine receptor 4 (CXCR4). CXCR4 antagonists mobilize inflammatory cells and promote infarct repair, but the cellular mechanisms are unclear. We investigated the therapeutic potential and mode of action of the peptidic macrocycle CXCR4 antagonist POL5551 in mice with reperfused MI. We applied cell depletion and adoptive transfer strategies using lymphocyte-deficient Rag1 knockout mice; DEREG mice, which express a diphtheria toxin receptor-enhanced green fluorescent protein fusion protein under the control of the promoter/enhancer region of the regulatory T (T Intraperitoneal POL5551 injections in wild-type mice (8 mg/kg at 2, 4, 6, and 8 d) enhanced angiogenesis in the infarct border-zone, reduced scar size, and attenuated left ventricular remodeling and contractile dysfunction at 28 d. Treatment effects were absent in splenectomized wild-type mice, Rag1 knockout mice, and T Our data confirm CXCR4 blockade as a promising treatment strategy after MI. We identify dendritic cell-primed splenic T
  • Cell therapy products: focus on issues with manufacturing and quality control of chimeric antigen receptor T-cell therapies

    Eyles, Jim E; Vessillier, Sandrine; Jones, Anika; Stacey, Glyn; Schneider, Christian K; Price, Jack; TWINCORE, Zentrum für experimentelle und klinische Infektionsforschung GmbH,Feodor-Lynen Str. 7, 30625 Hannover, Germany.
    Recent accelerated approvals of Chimeric Antigen Receptor T‐cell (CAR‐T) therapies targeting refractory haematological malignancies underscore the potential for this novel technology platform to provide new therapeutic options for oncology areas with high unmet medical needs. However, these powerful ‘living drugs’ are markedly different to conventional small molecule and biologic therapies on several levels. The highly complex nature and varied composition of CAR‐T based products still requires considerable investigation to resolve the best approaches to ensure reproducible and cost‐effective manufacture, clinical development, and application. This review will focus on key issues for manufacturing and quality control of these exciting new therapeutic modalities, preceded by a brief description of CAR principals and clinical development considerations. © 2018 The Authors. Journal of Chemical Technology & Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
  • Cell therapy products: focus on issues with manufacturing and quality control of chimeric antigen receptor T-cell therapies

    Eyles, Jim E; Vessillier, Sandrine; Jones, Anika; Stacey, Glyn; Schneider, Christian K; Price, Jack; TWINCORE, Zentrum für experimentelle und klinische Infektionsforschung GmbH,Feodor-Lynen Str. 7, 30625 Hannover, Germany. (2018-12-17)
  • C-Type Lectin Receptor (CLR)-Fc Fusion Proteins As Tools to Screen for Novel CLR/Bacteria Interactions: An Exemplary Study on Preselected Isolates.

    Mayer, Sabine; Moeller, Rebecca; Monteiro, João T; Ellrott, Kerstin; Josenhans, Christine; Lepenies, Bernd; TWINCORE, Zentrum für experimentelle und klinische Infektionsforschung GmbH,Feodor-Lynen Str. 7, 30625 Hannover, Germany. (2018-01-01)
    C-type lectin receptors (CLRs) are carbohydrate-binding receptors that recognize their ligands often in a Ca2+-dependent manner. Upon ligand binding, myeloid CLRs in innate immunity trigger or inhibit a variety of signaling pathways, thus initiating or modulating effector functions such as cytokine production, phagocytosis, and antigen presentation. CLRs bind to various pathogens, including viruses, fungi, parasites, and bacteria. The bacterium Campylobacter jejuni (C. jejuni) is a very frequent Gram-negative zoonotic pathogen of humans, causing severe intestinal symptoms. Interestingly, C. jejuni expresses several glycosylated surface structures, for example, the capsular polysaccharide (CPS), lipooligosaccharide (LOS), and envelope proteins. This “Methods” paper describes applications of CLR–Fc fusion proteins to screen for yet unknown CLR/bacteria interactions using C. jejuni as an example. ELISA-based detection of CLR/bacteria interactions allows a frst prescreening that is further confrmed by flow cytometry-based binding analysis and visualized using confocal microscopy. By applying these methods, we identifed Dectin-1 as a novel CLR recognizing two selected C. jejuni isolates with different LOS and CPS genotypes. In conclusion, the heredescribed applications of CLR–Fc fusion proteins represent useful methods to screen for and identify novel CLR/bacteria interactions.
  • Sialylation Is Dispensable for Early Murine Embryonic Development in Vitro.

    Abeln, Markus; Borst, Kristina M; Cajic, Samanta; Thiesler, Hauke; Kats, Elina; Albers, Iris; Kuhn, Maike; Kaever, Volkhard; Rapp, Erdmann; Münster-Kühnel, Anja; Weinhold, Birgit; TWINCORE, Zentrum für experimentelle und klinischeInfektionsforschung GmbH, Feodor-Lynen-Str. 7, 30625 Hannover, Germany. (2017-07-04)
    The negatively charged nonulose sialic acid (Sia) is essential for murine development in vivo. In order to elucidate the impact of sialylation on differentiation processes in the absence of maternal influences, we generated mouse embryonic stem cell (mESC) lines that lack CMP-Sia synthetase (CMAS) and thereby the ability to activate Sia to CMP-Sia. Loss of CMAS activity resulted in an asialo cell surface accompanied by an increase in glycoconjugates with terminal galactosyl and oligo-LacNAc residues, as well as intracellular accumulation of free Sia. Remarkably, these changes did not impact intracellular metabolites or the morphology and transcriptome of pluripotent mESC lines. Moreover, the capacity of Cmas
  • Targeting Antigens to Dendritic Cells the DC-Specific-ICAM3-Grabbing-Nonintegrin Receptor Induces Strong T-Helper 1 Immune Responses.

    Velasquez, Lis Noelia; Stüve, Philipp; Gentilini, Maria Virginia; Swallow, Maxine; Bartel, Judith; Lycke, Nils Yngve; Barkan, Daniel; Martina, Mariana; Lujan, Hugo D; Kalay, Hakan; van Kooyk, Yvette; Sparwasser, Tim D; Berod, Luciana; TWINCORE, Zentrum für experimentelle und klinischeInfektionsforschung GmbH, Feodor-Lynen-Str. 7, 30625 Hannover, Germany. (2018-01-01)
    Tuberculosis remains a major global health problem and efforts to develop a more effective vaccine have been unsuccessful so far. Targeting antigens (Ags) to dendritic cells (DCs) in vivo has emerged as a new promising vaccine strategy. In this approach, Ags are delivered directly to DCs via antibodies that bind to endocytic cell-surface receptors. Here, we explored DC-specifc-ICAM3-grabbing-nonintegrin (DC-SIGN) targeting as a potential vaccine against tuberculosis. For this, we made use of the hSIGN mouse model that expresses human DC-SIGN under the control of the murine CD11c promoter. We show that in vitro and in vivo delivery of anti-DC-SIGN antibodies conjugated to Ag85B and peptide 25 of Ag85B in combination with anti-CD40, the fungal cell wall component zymosan, and the cholera toxin-derived fusion protein CTA1-DD induces strong Ag-specifc CD4+ T-cell responses. Improved anti-mycobacterial immunity was accompanied by increased frequencies of Ag-specifc IFN-γ+ IL-2+ TNF-α+ polyfunctional CD4+ T cells in vaccinated mice compared with controls. Taken together, in this study we provide the proof of concept that the human DC-SIGN receptor can be effciently exploited for vaccine purposes to promote immunity against mycobacterial infections.
  • Homologous recombination mediates stable Fah gene integration and phenotypic correction in tyrosinaemia mouse-model.

    Junge, Norman; Yuan, Qinggong; Vu, Thu Huong; Krooss, Simon; Bednarski, Christien; Balakrishnan, Asha; Cathomen, Toni; Manns, Michael P; Baumann, Ulrich; Sharma, Amar Deep; Ott, Michael; TWINCORE, Zentrum für experimentelle und klinischeInfektionsforschung GmbH, Feodor-Lynen-Str. 7, 30625 Hannover, Germany. (2018-02-27)
    To stably correct tyrosinaemia in proliferating livers of fumarylacetoacetate-hydrolase knockout (Fah-/-)mice by homologous-recombination-mediated targeted addition of theFahgene.