Recent Submissions

  • The invasin D protein fromYersinia pseudotuberculosisselectively binds the Fab region of host antibodies and affects colonization of the intestine.

    Sadana, Pooja; Geyer, Rebecca; Pezoldt, Joern; Helmsing, Saskia; Huehn, Jochen; Hust, Michael; Dersch, Petra; Scrima, Andrea; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2018-03-13)
    Yersinia pseudotuberculosis is a Gram-negative bacterium and zoonotic pathogen responsible for a wide range of diseases, ranging from mild diarrhea, enterocolitis, lymphatic adenitis to persistent local inflammation. TheY. pseudotuberculosisinvasin D (InvD) molecule belongs to the invasin (InvA)-type autotransporter proteins, but its structure and function remain unknown. In this study, we present the first crystal structure of InvD, analyzed its expression and function in a murine infection model, and identified its target molecule in the host. We found that InvD is induced at 37°C and expressed in vivo2-4 days after infection, indicating that InvD is a virulence factor. During infection, InvD was expressed in all parts of the intestinal tract, but not in deeper lymphoid tissues. The crystal structure of the C-terminal adhesion domain of InvD revealed a distinct Ig-related fold, that, apart from the canonical β-sheets, comprises various modifications of and insertions into the Ig-core structure. We identified the Fab fragment of host-derived IgG/IgA antibodies as the target of the adhesion domain. Phage display panning and flow cytometry data further revealed that InvD exhibits a preferential binding specificity toward antibodies with VH3/VK1 variable domains and that it is specifically recruited to a subset of B cells. This finding suggests that InvD modulates Ig functions in the intestine and affects direct interactions with a subset of cell surface-exposed B-cell receptors. In summary, our results provide extensive insights into the structure of InvD and its specific interaction with the target molecule in the host.
  • Structure of the Dispase Autolysis-inducing Protein from Streptomyces mobaraensis and Glutamine Cross-linking Sites for Transglutaminase.

    Fiebig, David; Schmelz, Stefan; Zindel, Stephan; Ehret, Vera; Beck, Jan; Ebenig, Aileen; Ehret, Marina; Fröls, Sabrina; Pfeifer, Felicitas; Kolmar, Harald; Fuchsbauer, Hans-Lothar; Scrima, Andrea; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2016)
    Transglutaminase from Streptomyces mobaraensis (MTG) is an important enzyme for cross-linking and modifying proteins. An intrinsic substrate of MTG is the dispase autolysis-inducing protein (DAIP). The amino acid sequence of DAIP contains 5 potential glutamines and 10 lysines for MTG-mediated cross-linking. The aim of the study was to determine the structure and glutamine cross-linking sites of the first physiological MTG substrate. A production procedure was established in Escherichia coli BL21 (DE3) to obtain high yields of recombinant DAIP. DAIP variants were prepared by replacing four of five glutamines for asparagines in various combinations via site-directed mutagenesis. Incorporation of biotin cadaverine revealed a preference of MTG for the DAIP glutamines in the order of Gln-39 ≫ Gln-298 > Gln-345 ∼ Gln-65 ≫ Gln-144. In the structure of DAIP the preferred glutamines do cluster at the top of the seven-bladed β-propeller. This suggests a targeted cross-linking of DAIP by MTG that may occur after self-assembly in the bacterial cell wall. Based on our biochemical and structural data of the first physiological MTG substrate, we further provide novel insight into determinants of MTG-mediated modification, specificity, and efficiency.
  • Transcriptional and mutational profiling of an aminoglycoside resistant Pseudomonas aeruginosa small colony variant.

    Schniederjans, Monika; Koska, Michal; Häussler, Susanne; Helmholtz Centre for infection researchGmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2017-09-05)
    Pseudomonas aeruginosa is a major causative agent of both acute and chronic infections. Although aminoglycoside antibiotics are very potent drugs to fight such infections, antibiotic failure is steadily increasing mainly due to increasing resistance of the bacteria. Many molecular mechanisms that determine resistance such as acquisition of genes encoding for aminoglycoside-inactivating enzymes or overexpression of efflux pumps have been elucidated. However, there are additional, less-well described mechanisms of aminoglycoside resistance. In this study we have profiled a clinical tobramycin resistant P. aeruginosa strain that exhibited a small colony variant (SCV) phenotype. Both, the resistance and the colony morphology phenotypes were lost upon passaging the isolate under rich medium conditions. Transcriptional and mutational profiling revealed that the SCV harbored activating mutations in the two two-component systems AmgRS and PmrAB. Introduction of these mutations singularly into the type strain PA14 conferred tobramycin and colistin resistance, respectively. However, their combined introduction had an additive effect on the tobramycin resistance phenotype. Activation of the AmgRS system slightly reduced the colony size of the PA14 wild-type, whereas the simultaneous overexpression of gacA, the response regulator of the GacSA two component system, further reduced colony size. In conclusion, we uncovered combinatorial influences of two-component systems on clinically relevant phenotypes, such as resistance and the expression of the SCV phenotype. Our results clearly demonstrate that combined activation of P. aeruginosa two-component systems exhibit pleiotropic effects with unforeseen consequences.
  • Human lung tissue explants reveal novel interactions during Legionella pneumophila infections.

    Jäger, Jens; Marwitz, Sebastian; Tiefenau, Jana; Rasch, Janine; Shevchuk, Olga; Kugler, Christian; Goldmann, Torsten; Steinert, Michael; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2014-01)
    Histological and clinical investigations describe late stages of Legionnaires' disease but cannot characterize early events of human infection. Cellular or rodent infection models lack the complexity of tissue or have nonhuman backgrounds. Therefore, we developed and applied a novel model for Legionella pneumophila infection comprising living human lung tissue. We stimulated lung explants with L. pneumophila strains and outer membrane vesicles (OMVs) to analyze tissue damage, bacterial replication, and localization as well as the transcriptional response of infected tissue. Interestingly, we found that extracellular adhesion of L. pneumophila to the entire alveolar lining precedes bacterial invasion and replication in recruited macrophages. In contrast, OMVs predominantly bound to alveolar macrophages. Specific damage to septa and epithelia increased over 48 h and was stronger in wild-type-infected and OMV-treated samples than in samples infected with the replication-deficient, type IVB secretion-deficient DotA(-) strain. Transcriptome analysis of lung tissue explants revealed a differential regulation of 2,499 genes after infection. The transcriptional response included the upregulation of uteroglobin and the downregulation of the macrophage receptor with collagenous structure (MARCO). Immunohistochemistry confirmed the downregulation of MARCO at sites of pathogen-induced tissue destruction. Neither host factor has ever been described in the context of L. pneumophila infections. This work demonstrates that the tissue explant model reproduces realistic features of Legionnaires' disease and reveals new functions for bacterial OMVs during infection. Our model allows us to characterize early steps of human infection which otherwise are not feasible for investigations.
  • Metabolic peculiarities of Aspergillus niger disclosed by comparative metabolic genomics

    Sun, Jibin; Lu, Xin; Rinas, Ursula; Ping Zeng, An (2007-09-04)
    Abstract Background Aspergillus niger is an important industrial microorganism for the production of both metabolites, such as citric acid, and proteins, such as fungal enzymes or heterologous proteins. Despite its extensive industrial applications, the genetic inventory of this fungus is only partially understood. The recently released genome sequence opens a new horizon for both scientific studies and biotechnological applications. Results Here, we present the first genome-scale metabolic network for A. niger and an in-depth genomic comparison of this species to seven other fungi to disclose its metabolic peculiarities. The raw genomic sequences of A. niger ATCC 9029 were first annotated. The reconstructed metabolic network is based on the annotation of two A. niger genomes, CBS 513.88 and ATCC 9029, including enzymes with 988 unique EC numbers, 2,443 reactions and 2,349 metabolites. More than 1,100 enzyme-coding genes are unique to A. niger in comparison to the other seven fungi. For example, we identified additional copies of genes such as those encoding alternative mitochondrial oxidoreductase and citrate synthase in A. niger, which might contribute to the high citric acid production efficiency of this species. Moreover, nine genes were identified as encoding enzymes with EC numbers exclusively found in A. niger, mostly involved in the biosynthesis of complex secondary metabolites and degradation of aromatic compounds. Conclusion The genome-level reconstruction of the metabolic network and genome-based metabolic comparison disclose peculiarities of A. niger highly relevant to its biotechnological applications and should contribute to future rational metabolic design and systems biology studies of this black mold and related species.
  • Solution structure of the Equine Infectious Anemia Virus p9 protein: a rationalization of its different ALIX binding requirements compared to the analogous HIV-p6 protein

    Sharma, Alok; Bruns, Karsten; Röder, René; Henklein, Peter; Votteler, Jörg; Wray, Victor; Schubert, Ulrich (2009-12-17)
    Abstract Background The equine infection anemia virus (EIAV) p9 Gag protein contains the late (L-) domain required for efficient virus release of nascent virions from the cell membrane of infected cell. Results In the present study the p9 protein and N- and C-terminal fragments (residues 1-21 and 22-51, respectively) were chemically synthesized and used for structural analyses. Circular dichroism and 1H-NMR spectroscopy provide the first molecular insight into the secondary structure and folding of this 51-amino acid protein under different solution conditions. Qualitative 1H-chemical shift and NOE data indicate that in a pure aqueous environment p9 favors an unstructured state. In its most structured state under hydrophobic conditions, p9 adopts a stable helical structure within the C-terminus. Quantitative NOE data further revealed that this α-helix extends from Ser-27 to Ser-48, while the N-terminal residues remain unstructured. The structural elements identified for p9 differ substantially from that of the functional homologous HIV-1 p6 protein. Conclusions These structural differences are discussed in the context of the different types of L-domains regulating distinct cellular pathways in virus budding. EIAV p9 mediates virus release by recruiting the ALG2-interacting protein X (ALIX) via the YPDL-motif to the site of virus budding, the counterpart of the YPXnL-motif found in p6. However, p6 contains an additional PTAP L-domain that promotes HIV-1 release by binding to the tumor susceptibility gene 101 (Tsg101). The notion that structures found in p9 differ form that of p6 further support the idea that different mechanisms regulate binding of ALIX to primary versus secondary L-domains types.
  • Exploring the metabolic network of the epidemic pathogen Burkholderia cenocepacia J2315 via genome-scale reconstruction

    Fang, Kechi; Zhao, Hansheng; Sun, Changyue; Lam, Carolyn M C; Chang, Suhua; Zhang, Kunlin; Panda, Gurudutta; Godinho, Miguel; Martins dos Santos, Vítor A P; Wang, Jing (2011-05-25)
    Abstract Background Burkholderia cenocepacia is a threatening nosocomial epidemic pathogen in patients with cystic fibrosis (CF) or a compromised immune system. Its high level of antibiotic resistance is an increasing concern in treatments against its infection. Strain B. cenocepacia J2315 is the most infectious isolate from CF patients. There is a strong demand to reconstruct a genome-scale metabolic network of B. cenocepacia J2315 to systematically analyze its metabolic capabilities and its virulence traits, and to search for potential clinical therapy targets. Results We reconstructed the genome-scale metabolic network of B. cenocepacia J2315. An iterative reconstruction process led to the establishment of a robust model, iKF1028, which accounts for 1,028 genes, 859 internal reactions, and 834 metabolites. The model iKF1028 captures important metabolic capabilities of B. cenocepacia J2315 with a particular focus on the biosyntheses of key metabolic virulence factors to assist in understanding the mechanism of disease infection and identifying potential drug targets. The model was tested through BIOLOG assays. Based on the model, the genome annotation of B. cenocepacia J2315 was refined and 24 genes were properly re-annotated. Gene and enzyme essentiality were analyzed to provide further insights into the genome function and architecture. A total of 45 essential enzymes were identified as potential therapeutic targets. Conclusions As the first genome-scale metabolic network of B. cenocepacia J2315, iKF1028 allows a systematic study of the metabolic properties of B. cenocepacia and its key metabolic virulence factors affecting the CF community. The model can be used as a discovery tool to design novel drugs against diseases caused by this notorious pathogen.
  • Determinants of ligand binding and catalytic activity in the myelin enzyme 2',3'-cyclic nucleotide 3'-phosphodiesterase.

    Raasakka, Arne; Myllykoski, Matti; Laulumaa, Saara; Lehtimäki, Mari; Härtlein, Michael; Moulin, Martine; Kursula, Inari; Kursula, Petri; CSSB, Centre for Structural Systems Biology, Notekestr. 85, 22607 Hamburg, Germany. (2015)
    2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) is an enzyme highly abundant in the central nervous system myelin of terrestrial vertebrates. The catalytic domain of CNPase belongs to the 2H phosphoesterase superfamily and catalyzes the hydrolysis of nucleoside 2',3'-cyclic monophosphates to nucleoside 2'-monophosphates. The detailed reaction mechanism and the essential catalytic amino acids involved have been described earlier, but the roles of many amino acids in the vicinity of the active site have remained unknown. Here, several CNPase catalytic domain mutants were studied using enzyme kinetics assays, thermal stability experiments, and X-ray crystallography. Additionally, the crystal structure of a perdeuterated CNPase catalytic domain was refined at atomic resolution to obtain a detailed view of the active site and the catalytic mechanism. The results specify determinants of ligand binding and novel essential residues required for CNPase catalysis. For example, the aromatic side chains of Phe235 and Tyr168 are crucial for substrate binding, and Arg307 may affect active site electrostatics and regulate loop dynamics. The β5-α7 loop, unique for CNPase in the 2H phosphoesterase family, appears to have various functions in the CNPase reaction mechanism, from coordinating the nucleophilic water molecule to providing a binding pocket for the product and being involved in product release.
  • Genetic Diversity Underlying the Envelope Glycoproteins of Hepatitis C Virus: Structural and Functional Consequences and the Implications for Vaccine Design.

    Tarr, Alexander W; Khera, Tanvi; Hueging, Kathrin; Sheldon, Julie; Steinmann, Eike; Pietschmann, Thomas; Brown, Richard J P; TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover D-30625, Germany. (2015-07)
    In the 26 years since the discovery of Hepatitis C virus (HCV) a major global research effort has illuminated many aspects of the viral life cycle, facilitating the development of targeted antivirals. Recently, effective direct-acting antiviral (DAA) regimens with >90% cure rates have become available for treatment of chronic HCV infection in developed nations, representing a significant advance towards global eradication. However, the high cost of these treatments results in highly restricted access in developing nations, where the disease burden is greatest. Additionally, the largely asymptomatic nature of infection facilitates continued transmission in at risk groups and resource constrained settings due to limited surveillance. Consequently a prophylactic vaccine is much needed. The HCV envelope glycoproteins E1 and E2 are located on the surface of viral lipid envelope, facilitate viral entry and are the targets for host immunity, in addition to other functions. Unfortunately, the extreme global genetic and antigenic diversity exhibited by the HCV glycoproteins represents a significant obstacle to vaccine development. Here we review current knowledge of HCV envelope protein structure, integrating knowledge of genetic, antigenic and functional diversity to inform rational immunogen design.
  • The lasso segment is required for functional dimerization of the Plasmodium formin 1 FH2 domain.

    Ignatev, Alexander; Bhargav, Saligram Prabhakar; Vahokoski, Juha; Kursula, Petri; Kursula, Inari; Helmholtz Centre for Infection Research, University of Hamburg, and German Electron Synchrotron (DESY), Hamburg, Germany. (2012)
    Apicomplexan parasites, such as the malaria-causing Plasmodium species, utilize a unique way of locomotion and host cell invasion. This substrate-dependent gliding motility requires rapid cycling of actin between the monomeric state and very short, unbranched filaments. Despite the crucial role of actin polymerization for the survival of the malaria parasite, the majority of Plasmodium cellular actin is present in the monomeric form. Plasmodium lacks most of the canonical actin nucleators, and formins are essentially the only candidates for this function in all Apicomplexa. The malaria parasite has two formins, containing conserved formin homology (FH) 2 and rudimentary FH1 domains. Here, we show that Plasmodium falciparum formin 1 associates with and nucleates both mammalian and Plasmodium actin filaments. Although Plasmodium profilin alone sequesters actin monomers, thus inhibiting polymerization, its monomer-sequestering activity does not compete with the nucleating activity of formin 1 at an equimolar profilin-actin ratio. We have determined solution structures of P. falciparum formin 1 FH2 domain both in the presence and absence of the lasso segment and the FH1 domain, and show that the lasso is required for the assembly of functional dimers.
  • Genotypic and phenotypic analyses of a Pseudomonas aeruginosa chronic bronchiectasis isolate reveal differences from cystic fibrosis and laboratory strains.

    Varga, John J; Barbier, Mariette; Mulet, Xavier; Bielecki, Piotr; Bartell, Jennifer A; Owings, Joshua P; Martinez-Ramos, Inmaculada; Hittle, Lauren E; Davis, Michael R; Damron, F Heath; Liechti, George W; Puchałka, Jacek; Dos Santos, Vitor A P Martins; Ernst, Robert K; Papin, Jason A; Albertí, Sebastian; Oliver, Antonio; Goldberg, Joanna B; HZI-Helmholtzzentrum für Infektionsforschung (2015)
    Pseudomonas aeruginosa is an environmentally ubiquitous Gram-negative bacterium and important opportunistic human pathogen, causing severe chronic respiratory infections in patients with underlying conditions such as cystic fibrosis (CF) or bronchiectasis. In order to identify mechanisms responsible for adaptation during bronchiectasis infections, a bronchiectasis isolate, PAHM4, was phenotypically and genotypically characterized.
  • Structures of two bacterial resistance factors mediating tRNA-dependent aminoacylation of phosphatidylglycerol with lysine or alanine.

    Hebecker, Stefanie; Krausze, Joern; Hasenkampf, Tatjana; Schneider, Julia; Groenewold, Maike; Reichelt, Joachim; Jahn, Dieter; Heinz, Dirk W; Moser, Jürgen; Helmholtz Centre for infection research, Inhoffenstr. 7, D-38124 Braunschweig, Germany. (2015-08-25)
    The cytoplasmic membrane is probably the most important physical barrier between microbes and the surrounding habitat. Aminoacylation of the polar head group of the phospholipid phosphatidylglycerol (PG) catalyzed by Ala-tRNA(Ala)-dependent alanyl-phosphatidylglycerol synthase (A-PGS) or by Lys-tRNA(Lys)-dependent lysyl-phosphatidylglycerol synthase (L-PGS) enables bacteria to cope with cationic peptides that are harmful to the integrity of the cell membrane. Accordingly, these synthases also have been designated as multiple peptide resistance factors (MprF). They consist of a separable C-terminal catalytic domain and an N-terminal transmembrane flippase domain. Here we present the X-ray crystallographic structure of the catalytic domain of A-PGS from the opportunistic human pathogen Pseudomonas aeruginosa. In parallel, the structure of the related lysyl-phosphatidylglycerol-specific L-PGS domain from Bacillus licheniformis in complex with the substrate analog L-lysine amide is presented. Both proteins reveal a continuous tunnel that allows the hydrophobic lipid substrate PG and the polar aminoacyl-tRNA substrate to access the catalytic site from opposite directions. Substrate recognition of A-PGS versus L-PGS was investigated using misacylated tRNA variants. The structural work presented here in combination with biochemical experiments using artificial tRNA or artificial lipid substrates reveals the tRNA acceptor stem, the aminoacyl moiety, and the polar head group of PG as the main determinants for substrate recognition. A mutagenesis approach yielded the complementary amino acid determinants of tRNA interaction. These results have broad implications for the design of L-PGS and A-PGS inhibitors that could render microbial pathogens more susceptible to antimicrobial compounds.
  • Formation, Location, and Regulation of Endo-1,4-beta-Glucanases and beta-Glucosidases from Cellulomonas uda.

    Stoppok, W; Rapp, P; Wagner, F; Gesellschaft fur Biotechnologische Forschung mbH, D-38124 Braunschweig, Germany. (1982-07)
    The formation and location of endo-1,4-beta-glucanases and beta-glucosidases were studied in cultures of Cellulomonas uda grown on microcrystalline cellulose, carboxymethyl cellulose, printed newspaper, and some mono- or disaccharides. Endo-1,4-Glucanases were found to be extracellular, but a very small amount of cell-bound endo-1,4-beta-glucanase was considered to be the basal endoglucanase level of the cells. The formation of extracellular endo-1,4-beta-glucanases was induced by cellobiose and repressed by glucose. Extracellular endoglucanase activity was inhibited by cellobiose but not by glucose. beta-Glucosidases, on the other hand, were formed constitutively and found to be cell bound. beta-Glucosidase activity was inhibited noncompetitively by glucose. Some characteristics such as the optimal pH for and the thermostability of the endoglucanases and beta-glucosidases and the end products of cellulose degradation were determined.
  • Structure of the dimeric autoinhibited conformation of DAPK2, a pro-apoptotic protein kinase.

    Patel, Ashok K; Yadav, Ravi P; Majava, Viivi; Kursula, Inari; Kursula, Petri (2011-06-10)
    The death-associated protein kinase (DAPK) family has been characterized as a group of pro-apoptotic serine/threonine kinases that share specific structural features in their catalytic kinase domain. Two of the DAPK family members, DAPK1 and DAPK2, are calmodulin-dependent protein kinases that are regulated by oligomerization, calmodulin binding, and autophosphorylation. In this study, we have determined the crystal and solution structures of murine DAPK2 in the presence of the autoinhibitory domain, with and without bound nucleotides in the active site. The crystal structure shows dimers of DAPK2 in a conformation that is not permissible for protein substrate binding. Two different conformations were seen in the active site upon the introduction of nucleotide ligands. The monomeric and dimeric forms of DAPK2 were further analyzed for solution structure, and the results indicate that the dimers of DAPK2 are indeed formed through the association of two apposed catalytic domains, as seen in the crystal structure. The structures can be further used to build a model for DAPK2 autophosphorylation and to compare with closely related kinases, of which especially DAPK1 is an actively studied drug target. Our structures also provide a model for both homodimerization and heterodimerization of the catalytic domain between members of the DAPK family. The fingerprint of the DAPK family, the basic loop, plays a central role in the dimerization of the kinase domain.
  • Crystal structures explain functional differences in the two actin depolymerization factors of the malaria parasite.

    Singh, Bishal K; Sattler, Julia M; Chatterjee, Moon; Huttu, Jani; Schüler, Herwig; Kursula, Inari (2011-08-12)
    Apicomplexan parasites, such as the malaria-causing Plasmodium, utilize an actin-based motor for motility and host cell invasion. The actin filaments of these parasites are unusually short, and actin polymerization is under strict control of a small set of regulatory proteins, which are poorly conserved with their mammalian orthologs. Actin depolymerization factors (ADFs) are among the most important actin regulators, affecting the rates of filament turnover in a multifaceted manner. Plasmodium has two ADFs that display low sequence homology with each other and with the higher eukaryotic family members. Here, we show that ADF2, like canonical ADF proteins but unlike ADF1, binds to both globular and filamentous actin, severing filaments and inducing nucleotide exchange on the actin monomer. The crystal structure of Plasmodium ADF1 shows major differences from the ADF consensus, explaining the lack of F-actin binding. Plasmodium ADF2 structurally resembles the canonical members of the ADF/cofilin family.
  • The ten grand challenges of synthetic life.

    Porcar, Manuel; Danchin, Antoine; de Lorenzo, Victor; Dos Santos, Vitor A; Krasnogor, Natalio; Rasmussen, Steen; Moya, Andrés (2011-06)
    The construction of artificial life is one of the main scientific challenges of the Synthetic Biology era. Advances in DNA synthesis and a better understanding of regulatory processes make the goal of constructing the first artificial cell a realistic possibility. This would be both a fundamental scientific milestone and a starting point of a vast range of applications, from biofuel production to drug design. However, several major issues might hamper the objective of achieving an artificial cell. From the bottom-up to the selection-based strategies, this work encompasses the ten grand challenges synthetic biologists will have to be aware of in order to cope with the task of creating life in the lab.
  • Expression, purification, and initial characterization of different domains of recombinant mouse 2',3'-cyclic nucleotide 3'-phosphodiesterase, an enigmatic enzyme from the myelin sheath.

    Myllykoski, Matti; Kursula, Petri (2010)
    2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) is an enigmatic enzyme specifically expressed at high levels in the vertebrate myelin sheath, whose function and physiological substrates are unknown. The protein consists of two domains: an uncharacterized N-terminal domain with little homology to other proteins, and a C-terminal phosphodiesterase domain.
  • Purification, crystallization and preliminary X-ray crystallographic analysis of MIL, a glycosylated jacalin-related lectin from mulberry (Morus indica) latex.

    Patel, Ashok K; Singh, Vijay K; Bergmann, Ulrich; Jagannadham, Medicherla V; Kursula, Petri (2011-05-01)
    A quantitatively major protein has been purified from the latex of Morus indica. The purified previously uncharacterized protein, M. indica lectin (MIL), was further shown to be a glycosylated tetramer and belongs to the family of jacalin-related lectins. Crystallization of MIL was also accomplished and the tetragonal crystals diffracted synchrotron X-rays to a resolution of 2.8 Å.
  • Exploring the metabolic network of the epidemic pathogen Burkholderia cenocepacia J2315 via genome-scale reconstruction.

    Fang, Kechi; Zhao, Hansheng; Sun, Changyue; Lam, Carolyn M C; Chang, Suhua; Zhang, Kunlin; Panda, Gurudutta; Godinho, Miguel; Martins dos Santos, Vítor A P; Wang, Jing (2011)
    Burkholderia cenocepacia is a threatening nosocomial epidemic pathogen in patients with cystic fibrosis (CF) or a compromised immune system. Its high level of antibiotic resistance is an increasing concern in treatments against its infection. Strain B. cenocepacia J2315 is the most infectious isolate from CF patients. There is a strong demand to reconstruct a genome-scale metabolic network of B. cenocepacia J2315 to systematically analyze its metabolic capabilities and its virulence traits, and to search for potential clinical therapy targets.
  • Juxtanodin is an intrinsically disordered F-actin-binding protein.

    Ruskamo, Salla; Chukhlieb, Maryna; Vahokoski, Juha; Bhargav, Saligram Prabhakar; Liang, Fengyi; Kursula, Inari; Kursula, Petri (2012)
    Juxtanodin, also called ermin, is an F-actin-binding protein expressed by oligodendrocytes, the myelin-forming cells of the central nervous system. While juxtanodin carries a short conserved F-actin-binding segment at its C terminus, it otherwise shares no similarity with known protein sequences. We carried out a structural characterization of recombinant juxtanodin in solution. Juxtanodin turned out to be intrinsically disordered, as evidenced by conventional and synchrotron radiation CD spectroscopy. Small-angle X-ray scattering indicated that juxtanodin is a monomeric, highly elongated, unfolded molecule. Ensemble optimization analysis of the data suggested also the presence of more compact forms of juxtanodin. The C terminus was a strict requirement for co-sedimentation of juxtanodin with microfilaments, but juxtanodin had only mild effects on actin polymerization. The disordered nature of juxtanodin may predict functions as a protein interaction hub, although F-actin is its only currently known binding partner.

View more