• Complete genome sequence of Atopobium parvulum type strain (IPP 1246).

      Copeland, Alex; Sikorski, Johannes; Lapidus, Alla; Nolan, Matt; Del Rio, Tijana Glavina; Lucas, Susan; Chen, Feng; Tice, Hope; Pitluck, Sam; Cheng, Jan-Fang; Pukall, Rüdiger; Chertkov, Olga; Brettin, Thomas; Han, Cliff; Detter, John C; Kuske, Cheryl; Bruce, David; Goodwin, Lynne; Ivanova, Natalia; Mavromatis, Konstantinos; Mikhailova, Natalia; Chen, Amy; Palaniappan, Krishna; Chain, Patrick; Rohde, Manfred; Göker, Markus; Bristow, Jim; Eisen, Jonathan A; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C; Klenk, Hans-Peter; Detter, John C (2009)
      Atopobium parvulum (Weinberg et al. 1937) Collins and Wallbanks 1993 comb. nov. is the type strain of the species and belongs to the genomically yet unstudied Atopobium/Olsenella branch of the family Coriobacteriaceae. The species A. parvulum is of interest because its members are frequently isolated from the human oral cavity and are found to be associated with halitosis (oral malodor) but not with periodontitis. Here we describe the features of this organism, together with the complete genome sequence, and annotation. This is the first complete genome sequence of the genus Atopobium, and the 1,543,805 bp long single replicon genome with its 1369 protein-coding and 49 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.
    • Complete genome sequence of Bacteroides helcogenes type strain (P 36-108).

      Pati, Amrita; Gronow, Sabine; Zeytun, Ahmet; Lapidus, Alla; Nolan, Matt; Hammon, Nancy; Deshpande, Shweta; Cheng, Jan-Fang; Tapia, Roxane; Han, Cliff; Goodwin, Lynne; Pitluck, Sam; Liolios, Konstantinos; Pagani, Ioanna; Ivanova, Natalia; Mavromatis, Konstantinos; Chen, Amy; Palaniappan, Krishna; Land, Miriam; Hauser, Loren; Chang, Yun-Juan; Jeffries, Cynthia D; Detter, John C; Brambilla, Evelyne; Rohde, Manfred; Göker, Markus; Woyke, Tanja; Bristow, James; Eisen, Jonathan A; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C; Klenk, Hans-Peter; Lucas, Susan (2011)
      Bacteroides helcogenes Benno et al. 1983 is of interest because of its isolated phylogenetic location and, although it has been found in pig feces and is known to be pathogenic for pigs, occurrence of this bacterium is rare and it does not cause significant damage in intensive animal husbandry. The genome of B. helcogenes P 36-108(T) is already the fifth completed and published type strain genome from the genus Bacteroides in the family Bacteroidaceae. The 3,998,906 bp long genome with its 3,353 protein-coding and 83 RNA genes consists of one circular chromosome and is a part of the Genomic Encyclopedia of Bacteria and Archaea project.
    • Complete genome sequence of Bacteroides salanitronis type strain (BL78).

      Gronow, Sabine; Held, Brittany; Lucas, Susan; Lapidus, Alla; Del Rio, Tijana Glavina; Nolan, Matt; Tice, Hope; Deshpande, Shweta; Cheng, Jan-Fang; Pitluck, Sam; Liolios, Konstantinos; Pagani, Ioanna; Ivanova, Natalia; Mavromatis, Konstantinos; Pati, Amrita; Tapia, Roxane; Han, Cliff; Goodwin, Lynne; Chen, Amy; Palaniappan, Krishna; Land, Miriam; Hauser, Loren; Chang, Yun-Juan; Jeffries, Cynthia D; Brambilla, Evelyne-Marie; Rohde, Manfred; Göker, Markus; Detter, John C; Woyke, Tanja; Bristow, James; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C; Klenk, Hans-Peter; Eisen, Jonathan A (2011-04-29)
      Bacteroides salanitronis Lan et al. 2006 is a species of the genus Bacteroides, which belongs to the family Bacteroidaceae. The species is of interest because it was isolated from the gut of a chicken and the growing awareness that the anaerobic microflora of the cecum is of benefit for the host and may impact poultry farming. The 4,308,663 bp long genome consists of a 4.24 Mbp chromosome and three plasmids (6 kbp, 19 kbp, 40 kbp) containing 3,737 protein-coding and 101 RNA genes and is a part of the Genomic Encyclopedia of Bacteria and Archaea project.
    • Complete genome sequence of Beutenbergia cavernae type strain (HKI 0122).

      Land, Miriam; Pukall, Rüdiger; Abt, Birte; Göker, Markus; Rohde, Manfred; Glavina Del Rio, Tijana; Tice, Hope; Copeland, Alex; Cheng, Jan-Fang; Lucas, Susan; Chen, Feng; Nolan, Matt; Bruce, David; Goodwin, Lynne; Pitluck, Sam; Ivanova, Natalia; Mavromatis, Konstantinos; Ovchinnikova, Galina; Pati, Amrita; Chen, Amy; Palaniappan, Krishna; Hauser, Loren; Chang, Yun-Juan; Jefferies, Cynthia C; Saunders, Elizabeth; Brettin, Thomas; Detter, John C; Han, Cliff; Chain, Patrick; Bristow, James; Eisen, Jonathan A; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C; Klenk, Hans-Peter; Lapidus, Alla (2009)
      Beutenbergia cavernae (Groth et al. 1999) is the type species of the genus and is of phylogenetic interest because of its isolated location in the actinobacterial suborder Micrococcineae. B. cavernae HKI 0122(T) is a Gram-positive, non-motile, non-spore-forming bacterium isolated from a cave in Guangxi (China). B. cavernae grows best under aerobic conditions and shows a rod-coccus growth cycle. Its cell wall peptidoglycan contains the diagnostic L-lysine ← L-glutamate interpeptide bridge. Here we describe the features of this organism, together with the complete genome sequence, and annotation. This is the first completed genome sequence from the poorly populated micrococcineal family Beutenbergiaceae, and this 4,669,183 bp long single replicon genome with its 4225 protein-coding and 53 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.
    • Complete genome sequence of Brachybacterium faecium type strain (Schefferle 6-10).

      Lapidus, Alla; Pukall, Rüdiger; Labuttii, Kurt; Copeland, Alex; Del Rio, Tijana Glavina; Nolan, Matt; Chen, Feng; Lucas, Susan; Tice, Hope; Cheng, Jan-Fang; Bruce, David; Goodwin, Lynne; Pitluck, Sam; Rohde, Manfred; Göker, Markus; Pati, Amrita; Ivanova, Natalia; Mavrommatis, Konstantinos; Chen, Amy; Palaniappan, Krishna; D'haeseleer, Patrik; Chain, Patrick; Bristow, Jim; Eisen, Jonathan A; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C; Klenk, Hans-Peter (2009)
      Brachybacterium faecium Collins et al. 1988 is the type species of the genus, and is of phylogenetic interest because of its location in the Dermabacteraceae, a rather isolated family within the actinobacterial suborder Micrococcineae. B. faecium is known for its rod-coccus growth cycle and the ability to degrade uric acid. It grows aerobically or weakly anaerobically. The strain described in this report is a free-living, nonmotile, Gram-positive bacterium, originally isolated from poultry deep litter. Here we describe the features of this organism, together with the complete genome sequence, and annotation. This is the first complete genome sequence of a member of the actinobacterial family Dermabacteraceae, and the 3,614,992 bp long single replicon genome with its 3129 protein-coding and 69 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.
    • Complete genome sequence of Brachyspira murdochii type strain (56-150).

      Pati, Amrita; Sikorski, Johannes; Gronow, Sabine; Munk, Christine; Lapidus, Alla; Copeland, Alex; Glavina Del Tio, Tijana; Nolan, Matt; Lucas, Susan; Chen, Feng; Tice, Hope; Cheng, Jan-Fang; Han, Cliff; Detter, John C; Bruce, David; Tapia, Roxanne; Goodwin, Lynne; Pitluck, Sam; Liolios, Konstantinos; Ivanova, Natalia; Mavromatis, Konstantinos; Mikhailova, Natalia; Chen, Amy; Palaniappan, Krishna; Land, Miriam; Hauser, Loren; Chang, Yun-Juan; Jeffries, Cynthia D; Spring, Stefan; Rohde, Manfred; Göker, Markus; Bristow, James; Eisen, Jonathan A; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C; Klenk, Hans-Peter (2010)
      Brachyspira murdochii Stanton et al. 1992 is a non-pathogenic, host-associated spirochete of the family Brachyspiraceae. Initially isolated from the intestinal content of a healthy swine, the 'group B spirochaetes' were first described as Serpulina murdochii. Members of the family Brachyspiraceae are of great phylogenetic interest because of the extremely isolated location of this family within the phylum 'Spirochaetes'. Here we describe the features of this organism, together with the complete genome sequence and annotation. This is the first completed genome sequence of a type strain of a member of the family Brachyspiraceae and only the second genome sequence from a member of the genus Brachyspira. The 3,241,804 bp long genome with its 2,893 protein-coding and 40 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.
    • Complete genome sequence of Calditerrivibrio nitroreducens type strain (Yu37-1).

      Pitluck, Sam; Sikorski, Johannes; Zeytun, Ahmet; Lapidus, Alla; Nolan, Matt; Lucas, Susan; Hammon, Nancy; Deshpande, Shweta; Cheng, Jan-Fang; Tapia, Roxane; Han, Cliff; Goodwin, Lynne; Liolios, Konstantinos; Pagani, Ioanna; Ivanova, Natalia; Mavromatis, Konstantinos; Pati, Amrita; Chen, Amy; Palaniappan, Krishna; Hauser, Loren; Chang, Yun-Juan; Jeffries, Cynthia D; Detter, John C; Brambilla, Evelyne; Djao, Oliver Duplex Ngatchou; Rohde, Manfred; Spring, Stefan; Göker, Markus; Woyke, Tanja; Bristow, James; Eisen, Jonathan A; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C; Klenk, Hans-Peter; Land, Miriam (2011)
      Calditerrivibrio nitroreducens Iino et al. 2008 is the type species of the genus Calditerrivibrio. The species is of interest because of its important role in the nitrate cycle as nitrate reducer and for its isolated phylogenetic position in the Tree of Life. Here we describe the features of this organism, together with the complete genome sequence and annotation. This is the third complete genome sequence of a member of the family Deferribacteraceae. The 2,216,552 bp long genome with its 2,128 protein-coding and 50 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.
    • Complete genome sequence of Capnocytophaga ochracea type strain (VPI 2845).

      Mavrommatis, Konstantinos; Gronow, Sabine; Saunders, Elizabeth; Land, Miriam; Lapidus, Alla; Copeland, Alex; Glavina Del Rio, Tijana; Nolan, Matt; Lucas, Susan; Chen, Feng; Tice, Hope; Cheng, Jan-Fang; Bruce, David; Goodwin, Lynne; Pitluck, Sam; Pati, Amrita; Ivanova, Natalia; Chen, Amy; Palaniappan, Krishna; Chain, Patrick; Hauser, Loren; Chang, Yun-Juan; Jeffries, Cynthia D; Brettin, Thomas; Detter, John C; Han, Cliff; Bristow, James; Göker, Markus; Rohde, Manfred; Eisen, Jonathan A; Markowitz, Victor; Kyrpides, Nikos C; Klenk, Hans-Peter; Hugenholtz, Philip (2009)
      Capnocytophaga ochracea (Prévot et al. 1956) Leadbetter et al. 1982 is the type species of the genus Capnocytophaga. It is of interest because of its location in the Flavobacteriaceae, a genomically not yet charted family within the order Flavobacteriales. The species grows as fusiform to rod shaped cells which tend to form clumps and are able to move by gliding. C. ochracea is known as a capnophilic (CO(2)-requiring) organism with the ability to grow under anaerobic as well as aerobic conditions (oxygen concentration larger than 15%), here only in the presence of 5% CO(2). Strain VPI 2845(T), the type strain of the species, is portrayed in this report as a gliding, Gram-negative bacterium, originally isolated from a human oral cavity. Here we describe the features of this organism, together with the complete genome sequence, and annotation. This is the first completed genome sequence from the flavobacterial genus Capnocytophaga, and the 2,612,925 bp long single replicon genome with its 2193 protein-coding and 59 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.
    • Complete genome sequence of Cellulomonas flavigena type strain (134).

      Abt, Birte; Foster, Brian; Lapidus, Alla; Clum, Alicia; Sun, Hui; Pukall, Rüdiger; Lucas, Susan; Glavina Del Rio, Tijana; Nolan, Matt; Tice, Hope; Cheng, Jan-Fang; Pitluck, Sam; Liolios, Konstantinos; Ivanova, Natalia; Mavromatis, Konstantinos; Ovchinnikova, Galina; Pati, Amrita; Goodwin, Lynne; Chen, Amy; Palaniappan, Krishna; Land, Miriam; Hauser, Loren; Chang, Yun-Juan; Jeffries, Cynthia D; Rohde, Manfred; Göker, Markus; Woyke, Tanja; Bristow, James; Eisen, Jonathan A; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C; Klenk, Hans-Peter (2010)
      Cellulomonas flavigena (Kellerman and McBeth 1912) Bergey et al. 1923 is the type species of the genus Cellulomonas of the actinobacterial family Cellulomonadaceae. Members of the genus Cellulomonas are of special interest for their ability to degrade cellulose and hemicellulose, particularly with regard to the use of biomass as an alternative energy source. Here we describe the features of this organism, together with the complete genome sequence, and annotation. This is the first complete genome sequence of a member of the genus Cellulomonas, and next to the human pathogen Tropheryma whipplei the second complete genome sequence within the actinobacterial family Cellulomonadaceae. The 4,123,179 bp long single replicon genome with its 3,735 protein-coding and 53 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.
    • Complete genome sequence of Cellulophaga algicola type strain (IC166).

      Abt, Birte; Lu, Megan; Misra, Monica; Han, Cliff; Nolan, Matt; Lucas, Susan; Hammon, Nancy; Deshpande, Shweta; Cheng, Jan-Fang; Tapia, Roxane; Goodwin, Lynne; Pitluck, Sam; Liolios, Konstantinos; Pagani, Ioanna; Ivanova, Natalia; Mavromatis, Konstantinos; Ovchinikova, Galina; Pati, Amrita; Chen, Amy; Palaniappan, Krishna; Land, Miriam; Hauser, Loren; Chang, Yun-Juan; Jeffries, Cynthia D; Detter, John C; Brambilla, Evelyne; Rohde, Manfred; Tindall, Brian J; Göker, Markus; Woyke, Tanja; Bristow, James; Eisen, Jonathan A; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C; Klenk, Hans-Peter; Lapidus, Alla (2011)
      Cellulophaga algicola Bowman 2000 belongs to the family Flavobacteriaceae within the phylum 'Bacteroidetes' and was isolated from Melosira collected from the Eastern Antarctic coastal zone. The species is of interest because its members produce a wide range of extracellular enzymes capable of degrading proteins and polysaccharides with temperature optima of 20-30°C. This is the first completed genome sequence of a member of the genus Cellulophaga. The 4,888,353 bp long genome with its 4,285 protein-coding and 62 RNA genes consists of one circular chromosome and is a part of the Genomic Encyclopedia of Bacteria and Archaea project.
    • Complete genome sequence of Cellulophaga lytica type strain (LIM-21).

      Pati, Amrita; Abt, Birte; Teshima, Hazuki; Nolan, Matt; Lapidus, Alla; Lucas, Susan; Hammon, Nancy; Deshpande, Shweta; Cheng, Jan-Fang; Tapia, Roxane; Han, Cliff; Goodwin, Lynne; Pitluck, Sam; Liolios, Konstantinos; Pagani, Ioanna; Mavromatis, Konstantinos; Ovchinikova, Galina; Chen, Amy; Palaniappan, Krishna; Land, Miriam; Hauser, Loren; Jeffries, Cynthia D; Detter, John C; Brambilla, Evelyne-Marie; Kannan, K Palani; Rohde, Manfred; Spring, Stefan; Göker, Markus; Woyke, Tanja; Bristow, James; Eisen, Jonathan A; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C; Klenk, Hans-Peter; Ivanova, Natalia (2011-04-29)
      Cellulophaga lytica (Lewin 1969) Johansen et al. 1999 is the type species of the genus Cellulophaga, which belongs to the family Flavobacteriaceae within the phylum 'Bacteroidetes' and was isolated from marine beach mud in Limon, Costa Rica. The species is of biotechnological interest because its members produce a wide range of extracellular enzymes capable of degrading proteins and polysaccharides. After the genome sequence of Cellulophaga algicola this is the second completed genome sequence of a member of the genus Cellulophaga. The 3,765,936 bp long genome with its 3,303 protein-coding and 55 RNA genes consists of one circular chromosome and is a part of the Genomic Encyclopedia of Bacteria and Archaea project.
    • Complete genome sequence of Chitinophaga pinensis type strain (UQM 2034).

      Glavina Del Rio, Tijana; Abt, Birte; Spring, Stefan; Lapidus, Alla; Nolan, Matt; Tice, Hope; Copeland, Alex; Cheng, Jan-Fang; Chen, Feng; Bruce, David; Goodwin, Lynne; Pitluck, Sam; Ivanova, Natalia; Mavromatis, Konstantinos; Mikhailova, Natalia; Pati, Amrita; Chen, Amy; Palaniappan, Krishna; Land, Miriam; Hauser, Loren; Chang, Yun-Juan; Jeffries, Cynthia D; Chain, Patrick; Saunders, Elizabeth; Detter, John C; Brettin, Thomas; Rohde, Manfred; Göker, Markus; Bristow, Jim; Eisen, Jonathan A; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C; Klenk, Hans-Peter; Lucas, Susan (2010)
      Chitinophaga pinensis Sangkhobol and Skerman 1981 is the type strain of the species which is the type species of the rapidly growing genus Chitinophaga in the sphingobacterial family 'Chitinophagaceae'. Members of the genus Chitinophaga vary in shape between filaments and spherical bodies without the production of a fruiting body, produce myxospores, and are of special interest for their ability to degrade chitin. Here we describe the features of this organism, together with the complete genome sequence, and annotation. This is the first complete genome sequence of a member of the family 'Chitinophagaceae', and the 9,127,347 bp long single replicon genome with its 7,397 protein-coding and 95 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.
    • Complete genome sequence of Conexibacter woesei type strain (ID131577).

      Pukall, Rüdiger; Lapidus, Alla; Glavina Del Rio, Tijana; Copeland, Alex; Tice, Hope; Cheng, Jan-Fang; Lucas, Susan; Chen, Feng; Nolan, Matt; Bruce, David; Goodwin, Lynne; Pitluck, Sam; Mavromatis, Konstantinos; Ivanova, Natalia; Ovchinnikova, Galina; Pati, Amrita; Chen, Amy; Palaniappan, Krishna; Land, Miriam; Hauser, Loren; Chang, Yun-Juan; Jeffries, Cynthia D; Chain, Patrick; Meincke, Linda; Sims, David; Brettin, Thomas; Detter, John C; Rohde, Manfred; Göker, Markus; Bristow, Jim; Eisen, Jonathan A; Markowitz, Victor; Kyrpides, Nikos C; Klenk, Hans-Peter; Hugenholtz, Philip (2010)
      The genus Conexibacter (Monciardini et al. 2003) represents the type genus of the family Conexibacteraceae (Stackebrandt 2005, emend. Zhi et al. 2009) with Conexibacter woesei as the type species of the genus. C. woesei is a representative of a deep evolutionary line of descent within the class Actinobacteria. Strain ID131577(T) was originally isolated from temperate forest soil in Gerenzano (Italy). Cells are small, short rods that are motile by peritrichous flagella. They may form aggregates after a longer period of growth and, then as a typical characteristic, an undulate structure is formed by self-aggregation of flagella with entangled bacterial cells. Here we describe the features of the organism, together with the complete sequence and annotation. The 6,359,369 bp long genome of C. woesei contains 5,950 protein-coding and 48 RNA genes and is part of the Genomic Encyclopedia of Bacteria and Archaea project.
    • Complete genome sequence of Coraliomargarita akajimensis type strain (04OKA010-24).

      Mavromatis, Konstantinos; Abt, Birte; Brambilla, Evelyne; Lapidus, Alla; Copeland, Alex; Deshpande, Shweta; Nolan, Matt; Lucas, Susan; Tice, Hope; Cheng, Jan-Fang; Han, Cliff; Detter, John C; Woyke, Tanja; Goodwin, Lynne; Pitluck, Sam; Held, Brittany; Brettin, Thomas; Tapia, Roxanne; Ivanova, Natalia; Mikhailova, Natalia; Pati, Amrita; Liolios, Konstantinos; Chen, Amy; Palaniappan, Krishna; Land, Miriam; Hauser, Loren; Chang, Yun-Juan; Jeffries, Cynthia D; Rohde, Manfred; Göker, Markus; Bristow, James; Eisen, Jonathan A; Markowitz, Victor; Hugenholtz, Philip; Klenk, Hans-Peter; Kyrpides, Nikos C (2010)
      Coraliomargarita akajimensis Yoon et al. 2007 is the type species of the genus Coraliomargarita. C. akajimensis is an obligately aerobic, Gram-negative, non-spore-forming, non-motile, spherical bacterium that was isolated from seawater surrounding the hard coral Galaxea fascicularis. C. akajimensis is of special interest because of its phylogenetic position in a genomically under-studied area of the bacterial diversity. Here we describe the features of this organism, together with the complete genome sequence, and annotation. This is the first complete genome sequence of a member of the family Puniceicoccaceae. The 3,750,771 bp long genome with its 3,137 protein-coding and 55 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.
    • Complete genome sequence of Cryptobacterium curtum type strain (12-3).

      Mavrommatis, Konstantinos; Pukall, Rüdiger; Rohde, Christine; Chen, Feng; Sims, David; Brettin, Thomas; Kuske, Cheryl; Detter, John C; Han, Cliff; Lapidus, Alla; Copeland, Alex; Glavina Del Rio, Tijana; Nolan, Matt; Lucas, Susan; Tice, Hope; Cheng, Jan-Fang; Bruce, David; Goodwin, Lynne; Pitluck, Sam; Ovchinnikova, Galina; Pati, Amrita; Ivanova, Natalia; Chen, Amy; Palaniappan, Krishna; Chain, Patrick; D'haeseleer, Patrik; Göker, Markus; Bristow, Jim; Eisen, Jonathan A; Markowitz, Victor; Hugenholtz, Philip; Rohde, Manfred; Klenk, Hans-Peter; Kyrpides, Nikos C (2009)
      Cryptobacterium curtum Nakazawa etal. 1999 is the type species of the genus, and is of phylogenetic interest because of its very distant and isolated position within the family Coriobacteriaceae. C. curtum is an asaccharolytic, opportunistic pathogen with a typical occurrence in the oral cavity, involved in dental and oral infections like periodontitis, inflammations and abscesses. Here we describe the features of this organism, together with the complete genome sequence, and annotation. This is the first complete genome sequence of the actinobacterial family Coriobacteriaceae, and this 1,617,804 bp long single replicon genome with its 1364 protein-coding and 58 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.
    • Complete genome sequence of Deinococcus maricopensis type strain (LB-34).

      Pukall, Rüdiger; Zeytun, Ahmet; Lucas, Susan; Lapidus, Alla; Hammon, Nancy; Deshpande, Shweta; Nolan, Matt; Cheng, Jan-Fang; Pitluck, Sam; Liolios, Konstantinos; Pagani, Ioanna; Mikhailova, Natalia; Ivanova, Natalia; Mavromatis, Konstantinos; Pati, Amrita; Tapia, Roxane; Han, Cliff; Goodwin, Lynne; Chen, Amy; Palaniappan, Krishna; Land, Miriam; Hauser, Loren; Chang, Yun-Juan; Jeffries, Cynthia D; Brambilla, Evelyne-Marie; Rohde, Manfred; Göker, Markus; Detter, J Chris; Woyke, Tanja; Bristow, James; Eisen, Jonathan A; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C; Klenk, Hans-Peter (2011-04-29)
      Deinococcus maricopensis (Rainey and da Costa 2005) is a member of the genus Deinococcus, which is comprised of 44 validly named species and is located within the deeply branching bacterial phylum Deinococcus-Thermus. Strain LB-34(T) was isolated from a soil sample from the Sonoran Desert in Arizona. Various species of the genus Deinococcus are characterized by extreme radiation resistance, with D. maricopensis being resistant in excess of 10 kGy. Even though the genomes of three Deinococcus species, D. radiodurans, D. geothermalis and D. deserti, have already been published, no special physiological characteristic is currently known that is unique to this group. It is therefore of special interest to analyze the genomes of additional species of the genus Deinococcus to better understand how these species adapted to gamma- or UV ionizing-radiation. The 3,498,530 bp long genome of D. maricopensis with its 3,301 protein-coding and 66 RNA genes consists of one circular chromosome and is a part of the Genomic Encyclopedia of Bacteria and Archaea project.
    • Complete genome sequence of Denitrovibrio acetiphilus type strain (N2460).

      Kiss, Hajnalka; Lang, Elke; Lapidus, Alla; Copeland, Alex; Nolan, Matt; Glavina Del Rio, Tijana; Chen, Feng; Lucas, Susan; Tice, Hope; Cheng, Jan-Fang; Han, Cliff; Goodwin, Lynne; Pitluck, Sam; Liolios, Konstantinos; Pati, Amrita; Ivanova, Natalia; Mavromatis, Konstantinos; Chen, Amy; Palaniappan, Krishna; Land, Miriam; Hauser, Loren; Chang, Yun-Juan; Jeffries, Cynthia D; Detter, John C; Brettin, Thomas; Spring, Stefan; Rohde, Manfred; Göker, Markus; Woyke, Tanja; Bristow, James; Eisen, Jonathan A; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C; Klenk, Hans-Peter (2010)
      Denitrovibrio acetiphilus Myhr and Torsvik 2000 is the type species of the genus Denitrovibrio in the bacterial family Deferribacteraceae. It is of phylogenetic interest because there are only six genera described in the family Deferribacteraceae. D. acetiphilus was isolated as a representative of a population reducing nitrate to ammonia in a laboratory column simulating the conditions in off-shore oil recovery fields. When nitrate was added to this column undesirable hydrogen sulfide production was stopped because the sulfate reducing populations were superseded by these nitrate reducing bacteria. Here we describe the features of this marine, mesophilic, obligately anaerobic organism respiring by nitrate reduction, together with the complete genome sequence, and annotation. This is the second complete genome sequence of the order Deferribacterales and the class Deferribacteres, which is the sole class in the phylum Deferribacteres. The 3,222,077 bp genome with its 3,034 protein-coding and 51 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.
    • Complete genome sequence of Desulfarculus baarsii type strain (2st14).

      Sun, Hui; Spring, Stefan; Lapidus, Alla; Davenport, Karen; Del Rio, Tijana Glavina; Tice, Hope; Nolan, Matt; Copeland, Alex; Cheng, Jan-Fang; Lucas, Susan; Tapia, Roxanne; Goodwin, Lynne; Pitluck, Sam; Ivanova, Natalia; Pagani, Ionna; Mavromatis, Konstantinos; Ovchinnikova, Galina; Pati, Amrita; Chen, Amy; Palaniappan, Krishna; Hauser, Loren; Chang, Yun-Juan; Jeffries, Cynthia D; Detter, John C; Han, Cliff; Rohde, Manfred; Brambilla, Evelyne; Göker, Markus; Woyke, Tanja; Bristow, Jim; Eisen, Jonathan A; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C; Klenk, Hans-Peter; Land, Miriam (2010)
      Desulfarculus baarsii (Widdel 1981) Kuever et al. 2006 is the type and only species of the genus Desulfarculus, which represents the family Desulfarculaceae and the order Desulfarculales. This species is a mesophilic sulfate-reducing bacterium with the capability to oxidize acetate and fatty acids of up to 18 carbon atoms completely to CO(2). The acetyl-CoA/CODH (Wood-Ljungdahl) pathway is used by this species for the complete oxidation of carbon sources and autotrophic growth on formate. The type strain 2st14(T) was isolated from a ditch sediment collected near the University of Konstanz, Germany. This is the first completed genome sequence of a member of the order Desulfarculales. The 3,655,731 bp long single replicon genome with its 3,303 protein-coding and 52 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.
    • Complete genome sequence of Desulfobulbus propionicus type strain (1pr3).

      Pagani, Ioanna; Lapidus, Alla; Nolan, Matt; Lucas, Susan; Hammon, Nancy; Deshpande, Shweta; Cheng, Jan-Fang; Chertkov, Olga; Davenport, Karen; Tapia, Roxane; Han, Cliff; Goodwin, Lynne; Pitluck, Sam; Liolios, Konstantinos; Mavromatis, Konstantinos; Ivanova, Natalia; Mikhailova, Natalia; Pati, Amrita; Chen, Amy; Palaniappan, Krishna; Land, Miriam; Hauser, Loren; Chang, Yun-Juan; Jeffries, Cynthia D; Detter, John C; Brambilla, Evelyne; Kannan, K Palani; Djao, Olivier D Ngatchou; Rohde, Manfred; Pukall, Rüdiger; Spring, Stefan; Göker, Markus; Sikorski, Johannes; Woyke, Tanja; Bristow, James; Eisen, Jonathan A; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C; Klenk, Hans-Peter (2011)
      Desulfobulbus propionicus Widdel 1981 is the type species of the genus Desulfobulbus, which belongs to the family Desulfobulbaceae. The species is of interest because of its great implication in the sulfur cycle in aquatic sediments, its large substrate spectrum and a broad versatility in using various fermentation pathways. The species was the first example of a pure culture known to disproportionate elemental sulfur to sulfate and sulfide. This is the first completed genome sequence of a member of the genus Desulfobulbus and the third published genome sequence from a member of the family Desulfobulbaceae. The 3,851,869 bp long genome with its 3,351 protein-coding and 57 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.
    • Complete genome sequence of Desulfohalobium retbaense type strain (HR(100)).

      Spring, Stefan; Nolan, Matt; Lapidus, Alla; Glavina Del Rio, Tijana; Copeland, Alex; Tice, Hope; Cheng, Jan-Fang; Lucas, Susan; Land, Miriam; Chen, Feng; Bruce, David; Goodwin, Lynne; Pitluck, Sam; Ivanova, Natalia; Mavromatis, Konstantinos; Mikhailova, Natalia; Pati, Amrita; Chen, Amy; Palaniappan, Krishna; Hauser, Loren; Chang, Yun-Juan; Jeffries, Cynthia D; Munk, Christine; Kiss, Hajnalka; Chain, Patrick; Han, Cliff; Brettin, Thomas; Detter, John C; Schüler, Esther; Göker, Markus; Rohde, Manfred; Bristow, Jim; Eisen, Jonathan A; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C; Klenk, Hans-Peter (2010)
      Desulfohalobium retbaense (Ollivier et al. 1991) is the type species of the polyphyletic genus Desulfohalobium, which comprises, at the time of writing, two species and represents the family Desulfohalobiaceae within the Deltaproteobacteria. D. retbaense is a moderately halophilic sulfate-reducing bacterium, which can utilize H(2) and a limited range of organic substrates, which are incompletely oxidized to acetate and CO(2), for growth. The type strain HR(100) (T) was isolated from sediments of the hypersaline Retba Lake in Senegal. Here we describe the features of this organism, together with the complete genome sequence and annotation. This is the first completed genome sequence of a member of the family Desulfohalobiaceae. The 2,909,567 bp genome (one chromosome and a 45,263 bp plasmid) with its 2,552 protein-coding and 57 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.