• 1-Acyl-3-O-[β-glucopyranosyl-(1″→6′)-β-glucopyranosyl]-glycerols and Cordycedipeptides B and C, New Metabolites from Bacillus pumilus

      Wang, Hongpeng; Drawert, Frederike; Steinert, Michael; Schulz, Stefan; Laatsch, Hartmut; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (SAGE Publications, 2016-09)
      Four 1-monoacyl-3-O-[β-glucopyranosyl-(1→6)-β-glucopyranosyl]-glycerols (1) and four 1,2-diacyl-3-O-[β-glucopyranosyl-(1→6)-β-glucopyranosyl]-glycerols (2a) with acyl residues consisting of 1:1 mixtures of 1-iso-pentadecanoyl- and 1-anteiso-pentadecanoyl residues and the respective heptadecanoic acid isomers s as main components, have been characterized in the extracts of Bacillus pumilus strain DKS1. Twenty-seven further metabolites, among them the diketopiperazines cordycedipeptide A (3), B (4), and C (5), were obtained. All compounds were elucidated by NMR and MS techniques and fully characterized and tested for antimicrobial activity against Legionella pneumophila.
    • 1-Phenylsulfinyl-3-(pyridin-3-yl)naphthalen-2-ols: a new class of potent and selective aldosterone synthase inhibitors.

      Grombein, Cornelia M; Hu, Qingzhong; Heim, Ralf; Rau, Sabrina; Zimmer, Christina; Hartmann, Rolf W; Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarland University, Campus C23, D-66123 Saarbrücken, Germany. (2015-01-07)
      1-Phenylsulfinyl-3-(pyridin-3-yl)naphthalen-2-ols and related compounds were synthesized and evaluated for inhibition of aldosterone synthase (CYP11B2), a potential target for cardiovascular diseases associated with elevated plasma aldosterone levels like congestive heart failure and myocardial fibrosis. Introduction of substituents at the phenylsulfinyl moiety and changes of the substitution pattern at the naphthalene core were examined. Potent compounds were further examined for selectivity versus other important steroidogenic CYP enzymes, i.e. the highly homologous 11β-hydroxylase (CYP11B1), CYP17 and CYP19. The most potent compound (IC50 = 14 nM) discovered was the meta-trifluoromethoxy derivative 11, which also exhibited excellent selectivity toward CYP11B1 (SF = 415), and showed no inhibition of CYP17 and CYP19.
    • 14-3-3 proteins are constituents of the insoluble glycoprotein framework of the chlamydomonas cell wall.

      Voigt, Jürgen; Frank, Ronald; Helmholtz Centre for infection research, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2003-06)
      The cell wall of the unicellular green alga Chlamydomonas reinhardtii consists predominantly of Hyp-rich glycoproteins, which also occur in the extracellular matrix of multicellular green algae and higher plants. In addition to the Hyp-rich polypeptides, the insoluble glycoprotein framework of the Chlamydomonas cell wall contains minor amounts of 14-3-3 proteins, as revealed by immunochemical studies and mass spectroscopic analysis of tryptic peptides. Polypeptides immunologically related to the 14-3-3 proteins also were found in the culture medium of Chlamydomonas. The levels of two of these 14-3-3-related polypeptides were decreased in the culture medium of the wall-deficient mutant cw-15. These findings indicate that 14-3-3 proteins are involved in the cross-linking of Hyp-rich glycoproteins in the Chlamydomonas cell wall.
    • 17β-Hydroxysteroid Dehydrogenase Type 1 Inhibition: A Potential Treatment Option for Non-Small Cell Lung Cancer.

      Gargano, Emanuele M; Mohamed, Abdelrahman; Abdelsamie, Ahmed S; Mangiatordi, Giuseppe F; Drzewiecka, Hanna; Jagodziński, Paweł P; Mazzini, Arcangela; van Koppen, Chris J; Laschke, Matthias W; Nicolotti, Orazio; et al. (ACS, 2021-11-18)
      In the face of the clinical challenge posed by non-small cell lung cancer (NSCLC), the present need for new therapeutic approaches is genuine. Up to now, no proof existed that 17β-hydroxysteroid dehydrogenase type 1 (17β-HSD1) is a viable target for treating this disease. Synthesis of a rationally designed library of 2,5-disubstituted furan derivatives followed by biological screening led to the discovery of 17β-HSD1 inhibitor 1, capable of fully inhibiting human NSCLC Calu-1 cell proliferation. Its pharmacological profile renders it eligible for further in vivo studies. The very high selectivity of 1 over 17β-HSD2 was investigated, revealing a rational approach for the design of selective inhibitors. 17β-HSD1 and 1 hold promise in fighting NSCLC.
    • 17β-Hydroxysteroid Dehydrogenase Type 2 Inhibition: Discovery of Selective and Metabolically Stable Compounds Inhibiting Both the Human Enzyme and Its Murine Ortholog.

      Gargano, Emanuele M; Allegretta, Giuseppe; Perspicace, Enrico; Carotti, Angelo; Van Koppen, Chris; Frotscher, Martin; Marchais-Oberwinkler, Sandrine; Hartmann, Rolf W; Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS),Saarland 9 University, 66123 Saarbrücken, Germany. (2015)
      Design and synthesis of a new class of inhibitors for the treatment of osteoporosis and its comparative h17β-HSD2 and m17β-HSD2 SAR study are described. 17a is the first compound to show strong inhibition of both h17β-HSD2 and m17β-HSD2, intracellular activity, metabolic stability, selectivity toward h17β-HSD1, m17β-HSD1 and estrogen receptors α and β as well as appropriate physicochemical properties for oral bioavailability. These properties make it eligible for pre-clinical animal studies, prior to human studies.
    • 1H, 13C, 15N chemical shift assignments of SHP2 SH2 domains in complex with PD-1 immune-tyrosine motifs.

      Marasco, Michelangelo; Kirkpatrick, John P; Carlomagno, Teresa; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Springer, 2020-04-01)
      Inhibition of immune checkpoint receptor Programmed Death-1 (PD-1) via monoclonal antibodies is an established anticancer immunotherapeutic approach. This treatment has been largely successful; however, its high cost demands equally effective, more affordable alternatives. To date, the development of drugs targeting downstream players in the PD-1-dependent signaling pathway has been hampered by our poor understanding of the molecular details of the intermolecular interactions involved in the pathway. Activation of PD-1 leads to phosphorylation of two signaling motifs located in its cytoplasmic domain, the immune tyrosine inhibitory motif (ITIM) and immune tyrosine switch motif (ITSM), which recruit and activate protein tyrosine phosphatase SHP2. This interaction is mediated by the two Src homology 2 (SH2) domains of SHP2, termed N-SH2 and C-SH2, which recognize phosphotyrosines pY223 and pY248 of ITIM and ITSM, respectively. SHP2 then propagates the inhibitory signal, ultimately leading to suppression of T cell functionality. In order to facilitate mechanistic structural studies of this signaling pathway, we report the resonance assignments of the complexes formed by the signaling motifs of PD-1 and the SH2 domains of SHP2.
    • 1H, 13C, and 15N backbone chemical-shift assignments of SARS-CoV-2 non-structural protein 1 (leader protein)

      Wang, Ying; Kirkpatrick, John; Zur Lage, Susanne; Korn, Sophie M; Neißner, Konstantin; Schwalbe, Harald; Schlundt, Andreas; Carlomagno, Teresa; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (SPringer, 2021-03-26)
      The current COVID-19 pandemic caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has become a worldwide health crisis, necessitating coordinated scientific research and urgent identification of new drug targets for treatment of COVID-19 lung disease. The covid19-nmr consortium seeks to support drug development by providing publicly accessible NMR data on the viral RNA elements and proteins. The SARS-CoV-2 genome comprises a single RNA of about 30 kb in length, in which 14 open reading frames (ORFs) have been annotated, and encodes approximately 30 proteins. The first two-thirds of the SARS-CoV-2 genome is made up of two large overlapping open-reading-frames (ORF1a and ORF1b) encoding a replicase polyprotein, which is subsequently cleaved to yield 16 so-called non-structural proteins. The non-structural protein 1 (Nsp1), which is considered to be a major virulence factor, suppresses host immune functions by associating with host ribosomal complexes at the very end of its C-terminus. Furthermore, Nsp1 facilitates initiation of viral RNA translation via an interaction of its N-terminal domain with the 5' untranslated region (UTR) of the viral RNA. Here, we report the near-complete backbone chemical-shift assignments of full-length SARS-CoV-2 Nsp1 (19.8 kDa), which reveal the domain organization, secondary structure and backbone dynamics of Nsp1, and which will be of value to further NMR-based investigations of both the biochemical and physiological functions of Nsp1.
    • 2-Aminothiazole Derivatives as Selective Allosteric Modulators of the Protein Kinase CK2. 2. Structure-Based Optimization and Investigation of Effects Specific to the Allosteric Mode of Action.

      Bestgen, Benoît; Kufareva, Irina; Seetoh, Weiguang; Abell, Chris; Hartmann, Rolf W; Abagyan, Ruben; Le Borgne, Marc; Filhol, Odile; Cochet, Claude; Lomberget, Thierry; et al. (American Chemical Society, 2019-02-28)
      Protein CK2 has gained much interest as an anticancer drug target in the past decade. We had previously described the identification of a new allosteric site on the catalytic α-subunit, along with first small molecule ligands based on the 4-(4-phenylthiazol-2-ylamino)benzoic acid scaffold. In the present work, structure optimizations guided by a binding model led to the identification of the lead compound 2-hydroxy-4-((4-(naphthalen-2-yl)thiazol-2-yl)amino)benzoic acid (27), showing a submicromolar potency against purified CK2α (IC
    • 2-Hydroxysorangiadenosine: Structure and Biosynthesis of a Myxobacterial Sesquiterpene-Nucleoside.

      Okoth, Dorothy A; Hug, Joachim J; Garcia, Ronald; Spröer, Cathrin; Overmann, Jörg; Müller, Rolf; HIPS, Helmholtz-Institut für Pharmazeutische Forschung Saarland, Universitätscampus E8.1 66123 Saarbrücken, Germany. (MDPI, 2020-06-09)
      Myxobacteria represent an under-investigated source for biologically active natural products featuring intriguing structural moieties with potential applications, e.g., in the pharmaceutical industry. Sorangiadenosine and the here-discovered 2-hydroxysorangiadenosine are myxobacterial sesquiterpene-nucleosides with an unusual structural moiety, a bicyclic eudesmane-type sesquiterpene. As the biosynthesis of these rare terpene-nucleoside hybrid natural products remains elusive, we investigated secondary metabolomes and genomes of several 2-hydroxysorangiadenosine-producing myxobacteria. We report the isolation and full structure elucidation of 2-hydroxysorangiadenosine and its cytotoxic and antibiotic activities and propose a biosynthetic pathway in the myxobacterium Vitiosangium cumulatum MCy10943T.
    • 22nd European Society for Animal Cell Technology (ESACT) Meeting on Cell Based Technologies Vienna, Austria. 15-18 May 2011. Abstracts.

      Hauser, Hansjörg; Helmholtz Centre for infection research, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2011-11-22)
    • 3-Pyridyl substituted aliphatic cycles as CYP11B2 inhibitors: aromaticity abolishment of the core significantly increased selectivity over CYP1A2.

      Yin, Lina; Hu, Qingzhong; Hartmann, Rolf W; Pharmaceutical and Medicinal Chemistry, Saarland University & Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarbrücken, Germany. (2012)
      Aldosterone synthase (CYP11B2) is a promising therapeutic target for the treatment of cardiovascular diseases related to abnormally high aldosterone levels. On the basis of our previously identified lead compounds I-III, a series of 3-pyridinyl substituted aliphatic cycles were designed, synthesized and tested as CYP11B2 inhibitors. Aromaticity abolishment of the core was successfully applied to overcome the undesired CYP1A2 inhibition. This study resulted in a series of potent and selective CYP11B2 inhibitors, with compound 12 (IC(50) = 21 nM, SF = 50) as the most promising one, which shows no inhibition toward CYP1A2 at 2 µM. The design conception demonstrated in this study can be helpful in the optimization of CYP inhibitor drugs regarding CYP1A2 selectivity.
    • A 3D co-culture of three human cell lines to model the inflamed intestinal mucosa for safety testing of nanomaterials.

      Susewind, Julia; de Souza Carvalho-Wodarz, Cristiane; Repnik, Urska; Collnot, Eva-Maria; Schneider-Daum, Nicole; Griffiths, Gareth Wyn; Lehr, Claus-Michael; Helmholtz-Institut für Pharmaceutische Forschung Saarland, Universitätscampus E8.1, 66123 Saarbrücken, Germany. (2016)
      Oral exposure to nanomaterials is a current concern, asking for innovative biological test systems to assess their safety, especially also in conditions of inflammatory disorders. Aim of this study was to develop a 3D intestinal model, consisting of Caco-2 cells and two human immune cell lines, suitable to assess nanomaterial toxicity, in either healthy or diseased conditions. Human macrophages (THP-1) and human dendritic cells (MUTZ-3) were embedded in a collagen scaffold and seeded on the apical side of transwell inserts. Caco-2 cells were seeded on top of this layer, forming a 3D model of the intestinal mucosa. Toxicity of engineered nanoparticles (NM101 TiO2, NM300 Ag, Au) was evaluated in non-inflamed and inflamed co-cultures, and also compared to non-inflamed Caco-2 monocultures. Inflammation was elicited by IL-1β, and interactions with engineered NPs were addressed by different endpoints. The 3D co-culture showed well preserved ultrastructure and significant barrier properties. Ag NPs were found to be more toxic than TiO2 or Au NPs. But once inflamed with IL-1β, the co-cultures released higher amounts of IL-8 compared to Caco-2 monocultures. However, the cytotoxicity of Ag NPs was higher in Caco-2 monocultures than in 3D co-cultures. The naturally higher IL-8 production in the co-cultures was enhanced even further by the Ag NPs. This study shows that it is possible to mimic inflamed conditions in a 3D co-culture model of the intestinal mucosa. The fact that it is based on three easily available human cell lines makes this model valuable to study the safety of nanomaterials in the context of inflammation.
    • 3D culture conditions support Kaposi's sarcoma herpesvirus (KSHV) maintenance and viral spread in endothelial cells.

      Dubich, Tatyana; Dittrich, Anne; Bousset, Kristine; Geffers, Robert; Büsche, Guntram; Köster, Mario; Hauser, Hansjörg; Schulz, Thomas F; Wirth, Dagmar; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Springer International, 2021-01-23)
      Kaposi's sarcoma-associated herpesvirus (KSHV) is a human tumorigenic virus and the etiological agent of an endothelial tumor (Kaposi's sarcoma) and two B cell proliferative diseases (primary effusion lymphoma and multicentric Castleman's disease). While in patients with late stage of Kaposi's sarcoma the majority of spindle cells are KSHV-infected, viral copies are rapidly lost in vitro, both upon culture of tumor-derived cells or from newly infected endothelial cells. We addressed this discrepancy by investigating a KSHV-infected endothelial cell line in various culture conditions and in tumors of xenografted mice. We show that, in contrast to two-dimensional endothelial cell cultures, KSHV genomes are maintained under 3D cell culture conditions and in vivo. Additionally, an increased rate of newly infected cells was detected in 3D cell culture. Furthermore, we show that the PI3K/Akt/mTOR and ATM/γH2AX pathways are modulated and support an improved KSHV persistence in 3D cell culture. These mechanisms may contribute to the persistence of KSHV in tumor tissue in vivo and provide a novel target for KS specific therapeutic interventions. KEY MESSAGES: In vivo maintenance of episomal KSHV can be mimicked in 3D spheroid cultures 3D maintenance of KSHV is associated with an increased de novo infection frequency PI3K/Akt/mTOR and ATM/ γH2AX pathways contribute to viral maintenance.
    • The 3D structure of Kaposi sarcoma herpesvirus LANA C-terminal domain bound to DNA.

      Hellert, Jan; Weidner-Glunde, Magdalena; Krausze, Joern; Lünsdorf, Heinrich; Ritter, Christiane; Schulz, Thomas F; Lührs, Thorsten (2015-05-26)
      Kaposi sarcoma herpesvirus (KSHV) persists as a latent nuclear episome in dividing host cells. This episome is tethered to host chromatin to ensure proper segregation during mitosis. For duplication of the latent genome, the cellular replication machinery is recruited. Both of these functions rely on the constitutively expressed latency-associated nuclear antigen (LANA) of the virus. Here, we report the crystal structure of the KSHV LANA DNA-binding domain (DBD) in complex with its high-affinity viral target DNA, LANA binding site 1 (LBS1), at 2.9 Å resolution. In contrast to homologous proteins such as Epstein-Barr virus nuclear antigen 1 (EBNA-1) of the related γ-herpesvirus Epstein-Barr virus, specific DNA recognition by LANA is highly asymmetric. In addition to solving the crystal structure, we found that apart from the two known LANA binding sites, LBS1 and LBS2, LANA also binds to a novel site, denoted LBS3. All three sites are located in a region of the KSHV terminal repeat subunit previously recognized as a minimal replicator. Moreover, we show that the LANA DBD can coat DNA of arbitrary sequence by virtue of a characteristic lysine patch, which is absent in EBNA-1 of the Epstein-Barr virus. Likely, these higher-order assemblies involve the self-association of LANA into supermolecular spirals. One such spiral assembly was solved as a crystal structure of 3.7 Å resolution in the absence of DNA. On the basis of our data, we propose a model for the controlled nucleation of higher-order LANA oligomers that might contribute to the characteristic subnuclear KSHV microdomains ("LANA speckles"), a hallmark of KSHV latency.
    • 3DTF: a web server for predicting transcription factor PWMs using 3D structure-based energy calculations.

      Gabdoulline, R; Eckweiler, D; Kel, A; Stegmaier, P; Heinrich-Heine University of Duesseldorf, Universitaetstr. 1, 40225 Duesseldorf, Helmholtz Center for Infection Research, Inhoffenstrasse 7, 38234 Braunschweig, GeneXplain GmbH, Am Exer 10 b, 38302 Wolfenbüttel, BIOBASE GmbH, Halchtersche Str. 33, 38304 Wolfenbüttel, Germany and Institute of Chemical Biology and Fundamental Medicine, Russian Academy of Science, 10 Lavrentyev Ave, 630090 Novosibirsk, Russia. (2012-06-11)
      We present the webserver 3D transcription factor (3DTF) to compute position-specific weight matrices (PWMs) of transcription factors using a knowledge-based statistical potential derived from crystallographic data on protein-DNA complexes. Analysis of available structures that can be used to construct PWMs shows that there are hundreds of 3D structures from which PWMs could be derived, as well as thousands of proteins homologous to these. Therefore, we created 3DTF, which delivers binding matrices given the experimental or modeled protein-DNA complex. The webserver can be used by biologists to derive novel PWMs for transcription factors lacking known binding sites and is freely accessible at http://www.gene-regulation.com/pub/programs/3dtf/.
    • 4-sulfomuconolactone hydrolases from Hydrogenophaga intermedia S1 and Agrobacterium radiobacter S2.

      Halak, Sad; Basta, Tamara; Bürger, Sibylle; Contzen, Matthias; Wray, Victor; Pieper, Dietmar Helmut; Stolz, Andreas; Institut für Mikrobiologie, Universität Stuttgart, Allmandring 31, D-70569 Stuttgart, Germany. (2007-10)
      The 4-carboxymethylen-4-sulfo-but-2-en-olide (4-sulfomuconolactone) hydrolases from Hydrogenophaga intermedia strain S1 and Agrobacterium radiobacter strain S2 are part of a modified protocatechuate pathway responsible for the degradation of 4-sulfocatechol. In both strains, the hydrolase-encoding genes occur downstream of those encoding the enzymes that catalyze the lactonization of 3-sulfomuconate. The deduced amino acid sequences of the 4-sulfomuconolactone hydrolases demonstrated the highest degree of sequence identity to 2-pyrone-4,6-dicarboxylate hydrolases, which take part in the meta cleavage pathway of protocatechuate. The 4-sulfomuconolactone hydrolases did not convert 2-pyrone-4,6-dicarboxylate, and the 2-pyrone-4,6-dicarboxylate hydrolase from Sphingomonas paucimobilis SYK-6 did not convert 4-sulfomuconolactone. Nevertheless, the presence of highly conserved histidine residues in the 4-sulfomuconolactone and the 2-pyrone-4,6-dicarboxylate hydrolases and some further sequence similarities suggested that both enzymes belong to the metallo-dependent hydrolases (the "amidohydrolase superfamily"). The 4-sulfomuconolactone hydrolases were heterologously expressed as His-tagged enzyme variants. Gel filtration experiments suggested that the enzymes are present as monomers in solution, with molecular weights of approximately 33,000 to 35,000. 4-Sulfomuconolactone was converted by sulfomuconolactone hydrolases to stoichiometric amounts of maleylacetate and sulfite. The 4-sulfomuconolactone hydrolases from both strains showed pH optima at pH 7 to 7.5 and rather similar catalytic constant (k(cat)/K(M))values. The suggested 4-sulfocatechol pathway from 4-sulfocatechol to maleylacetate was confirmed by in situ nuclear magnetic resonance analysis using the recombinantly expressed enzymes.
    • 7-Hydroxycoumarins Are Affinity-Based Fluorescent Probes for Competitive Binding Studies of Macrophage Migration Inhibitory Factor.

      Xiao, Zhangping; Chen, Deng; Song, Shanshan; van der Vlag, Ramon; van der Wouden, Petra E; van Merkerk, Ronald; Cool, Robbert H; Hirsch, Anna K H; Melgert, Barbro N; Quax, Wim J; et al. (American Chemical Society, 2020-10-13)
      Macrophage migration inhibitory factor (MIF) is a cytokine with key roles in inflammation and cancer, which qualifies it as a potential drug target. Apart from its cytokine activity, MIF also harbors enzyme activity for keto-enol tautomerization. MIF enzymatic activity has been used for identification of MIF binding molecules that also interfere with its biological activity. However, MIF tautomerase activity assays are troubled by irregularities, thus creating a need for alternative methods. In this study, we identified a 7-hydroxycoumarin fluorophore with high affinity for the MIF tautomerase active site (Ki = 18 ± 1 nM) that binds with concomitant quenching of its fluorescence. This property enabled development of a novel competition-based assay format to quantify MIF binding. We also demonstrated that the 7-hydroxycoumarin fluorophore interfered with the MIF-CD74 interaction and inhibited proliferation of A549 cells. Thus, we provide a high-affinity MIF binder as a novel tool to advance MIF-oriented research.
    • 7-O-malonyl macrolactin A, a new macrolactin antibiotic from Bacillus subtilis active against methicillin-resistant Staphylococcus aureus, vancomycin-resistant enterococci, and a small-colony variant of Burkholderia cepacia.

      Romero-Tabarez, Magally; Jansen, Rolf; Sylla, Marita; Lünsdorf, Heinrich; Häussler, Susanne; Santosa, Dwi A; Timmis, Kenneth N; Molinari, Gabriella (2006-05-01)
      We report here the discovery, isolation, and chemical and preliminary biological characterization of a new antibiotic compound, 7-O-malonyl macrolactin A (MMA), produced by a Bacillus subtilis soil isolate. MMA is a bacteriostatic antibiotic that inhibits a number of multidrug-resistant gram-positive bacterial pathogens, including methicillin-resistant Staphylococcus aureus, vancomycin-resistant enterococci, and a small-colony variant of Burkholderia cepacia. MMA-treated staphylococci and enterococci were pseudomulticellular and exhibited multiple asymmetric initiation points of septum formation, indicating that MMA may inhibit a cell division function.
    • A dual-species co-cultivation system to study the interactions between Roseobacters and dinoflagellates

      Wang, Hui; Tomasch, Jürgen; Jarek, Michael; Wagner-Döbler, Irene (2014-07-11)
    • A German external quality survey of diagnostic microbiology of respiratory tract infections in patients with cystic fibrosis.

      Balke, B; Schmoldt, S; Häuβler, S; Suerbaum, S; Heesemann, J; Hogardt, M; Institut für Medizinische Mikrobiologie und Krankenhaushygiene, Medizinische Hochschule Hannover, Carl-Neuberg-Strasse 1, 30625 Hanover, Germany. (2008-01)
      BACKGROUND: The goal of this pilot study was to design an external quality assessment (EQA) scheme for German cystic fibrosis (CF) clinical microbiology laboratories. Therefore, a multicentre study of 18 German CF laboratories was performed to evaluate their proficiency in analyzing CF respiratory secretions. METHODS: Simulated clinical specimens containing a set of four frequent CF pathogens, namely two Pseudomonas aeruginosa strains differing in morphotype (mucoid versus non-mucoid) and resistotype, one Staphylococcus aureus strain and one Burkholderia multivorans strain, were distributed to each laboratory. Isolation, identification and antimicrobial susceptibility testing (AST) of any bacterial pathogen present and completion of a questionnaire about applied microbiological protocols were requested. RESULTS: Three of four strains were isolated and identified correctly by almost all laboratories. B. multivorans was once misidentified as Burkholderia cenocepacia. Fourteen laboratories failed to detect the second multidrug resistant P. aeruginosa isolate. AST errors occurred most often for P. aeruginosa 2 followed by B. multivorans, P. aeruginosa 1 and S. aureus. Evaluation of the questionnaires revealed major differences in cultivation and identification techniques applied by the participating laboratories. CONCLUSIONS: A periodical EQA programme for German CF laboratories and standardized microbiological procedures seem to be necessary to advance diagnostic microbiology employed on CF respiratory tract specimens and may help to improve anti-infective treatment and infection control practices for CF patients.