• About cytokeratin 19 and the drivers of liver regeneration.

      Junge, Norman; Sharma, Amar Deep; Ott, Michael; TwinCore, Zentrum für experimentelle und klinische Infektionsforschung GmbH, Feodor-Lynen Str. 7, 30625 Hannover, Germany. (2017-10-12)
    • Absence of Foxp3(+) Regulatory T Cells during Allergen Provocation Does Not Exacerbate Murine Allergic Airway Inflammation.

      Baru, Abdul Mannan; Ganesh, Venkateswaran; Krishnaswamy, Jayendra Kumar; Hesse, Christina; Untucht, Christopher; Glage, Silke; Behrens, Georg; Mayer, Christian Thomas; Puttur, Franz; Sparwasser, Tim; et al. (2012)
      Regulatory T cells (Tregs) play a non-redundant role in maintenance of immune homeostasis. This is achieved by suppressing both, priming of naïve cells and effector cell functions. Although Tregs have been implicated in modulating allergic immune responses, their influence on distinct phases of development of allergies remains unclear. In this study, by using bacterial artificial chromosome (BAC)-transgenic Foxp3-DTR (DEREG) mice we demonstrate that the absence of Foxp3(+) Tregs during the allergen challenge surprisingly does not exacerbate allergic airway inflammation in BALB/c mice. As genetic disposition due to strain specificity may contribute significantly to development of allergies, we performed similar experiment in C57BL/6 mice, which are less susceptible to allergy in the model of sensitization used in this study. We report that the genetic background does not influence the consequence of this depletion regimen. These results signify the temporal regulation exerted by Foxp3(+) Tregs in limiting allergic airway inflammation and may influence their application as potential therapeutics.
    • The Absence of HIF-1α Increases Susceptibility to Leishmania donovani Infection via Activation of BNIP3/mTOR/SREBP-1c Axis.

      Mesquita, Inês; Ferreira, Carolina; Moreira, Diana; Kluck, George Eduardo Gabriel; Barbosa, Ana Margarida; Torrado, Egídio; Dinis-Oliveira, Ricardo Jorge; Gonçalves, Luís Gafeira; Beauparlant, Charles-Joly; Droit, Arnaud; et al. (Cell Press, 2020-03-24)
      Hypoxia-inducible factor-1 alpha (HIF-1α) is considered a global regulator of cellular metabolism and innate immune cell functions. Intracellular pathogens such as Leishmania have been reported to manipulate host cell metabolism. Herein, we demonstrate that myeloid cells from myeloid-restricted HIF-1α-deficient mice and individuals with loss-of-function HIF1A gene polymorphisms are more susceptible to L. donovani infection through increased lipogenesis. Absence of HIF-1α leads to a defect in BNIP3 expression, resulting in the activation of mTOR and nuclear translocation of SREBP-1c. We observed the induction of lipogenic gene transcripts, such as FASN, and lipid accumulation in infected HIF-1α-/- macrophages. L. donovani-infected HIF-1α-deficient mice develop hypertriglyceridemia and lipid accumulation in splenic and hepatic myeloid cells. Most importantly, our data demonstrate that manipulating FASN or SREBP-1c using pharmacological inhibitors significantly reduced parasite burden. As such, genetic deficiency of HIF-1α is associated with increased lipid accumulation, which results in impaired host-protective anti-leishmanial functions of myeloid cells.
    • Absence of Siglec-H in MCMV infection elevates interferon alpha production but does not enhance viral clearance.

      Puttur, Franz; Arnold-Schrauf, Catharina; Lahl, Katharina; Solmaz, Gulhas; Lindenberg, Marc; Mayer, Christian Thomas; Gohmert, Melanie; Swallow, Maxine; van Helt, Christopher; Schmitt, Heike; et al. (2013-09)
      Plasmacytoid dendritic cells (pDCs) express the I-type lectin receptor Siglec-H and produce interferon α (IFNα), a critical anti-viral cytokine during the acute phase of murine cytomegalovirus (MCMV) infection. The ligands and biological functions of Siglec-H still remain incompletely defined in vivo. Thus, we generated a novel bacterial artificial chromosome (BAC)-transgenic "pDCre" mouse which expresses Cre recombinase under the control of the Siglec-H promoter. By crossing these mice with a Rosa26 reporter strain, a representative fraction of Siglec-H⁺ pDCs is terminally labeled with red fluorescent protein (RFP). Interestingly, systemic MCMV infection of these mice causes the downregulation of Siglec-H surface expression. This decline occurs in a TLR9- and MyD88-dependent manner. To elucidate the functional role of Siglec-H during MCMV infection, we utilized a novel Siglec-H deficient mouse strain. In the absence of Siglec-H, the low infection rate of pDCs with MCMV remained unchanged, and pDC activation was still intact. Strikingly, Siglec-H deficiency induced a significant increase in serum IFNα levels following systemic MCMV infection. Although Siglec-H modulates anti-viral IFNα production, the control of viral replication was unchanged in vivo. The novel mouse models will be valuable to shed further light on pDC biology in future studies.
    • Active suppression of intestinal CD4(+)TCRαβ(+) T-lymphocyte maturation during the postnatal period.

      Torow, Natalia; Yu, Kai; Hassani, Kasra; Freitag, Jenny; Schulz, Olga; Basic, Marijana; Brennecke, Anne; Sparwasser, Tim; Wagner, Norbert; Bleich, André; et al. (2015)
      Priming of the mucosal immune system during the postnatal period substantially influences host-microbial interaction and susceptibility to immune-mediated diseases in adult life. The underlying mechanisms are ill defined. Here we show that shortly after birth, CD4 T cells populate preformed lymphoid structures in the small intestine and quickly acquire a distinct transcriptional profile. T-cell recruitment is independent of microbial colonization and innate or adaptive immune stimulation but requires β7 integrin expression. Surprisingly, neonatal CD4 T cells remain immature throughout the postnatal period under homeostatic conditions but undergo maturation and gain effector function on barrier disruption. Maternal SIgA and regulatory T cells act in concert to prevent immune stimulation and maintain the immature phenotype of CD4 T cells in the postnatal intestine during homeostasis. Active suppression of CD4 T-cell maturation during the postnatal period might contribute to prevent auto-reactivity, sustain a broad TCR repertoire and establish life-long immune homeostasis.
    • Adenoviral vector-mediated GM-CSF gene transfer improves anti-mycobacterial immunity in mice - role of regulatory T cells.

      Singpiel, Alena; Kramer, Julia; Maus, Regina; Stolper, Jennifer; Bittersohl, Lara Friederike; Gauldie, Jack; Kolb, Martin; Welte, Tobias; Sparwasser, Tim; Maus, Ulrich A; et al. (2017-10-26)
      Granulocyte macrophage-colony stimulating factor (GM-CSF) is a hematopoietic growth factor involved in differentiation, survival and activation of myeloid and non-myeloid cells with important implications for lung antibacterial immunity. Here we examined the effect of pulmonary adenoviral vector-mediated delivery of GM-CSF (AdGM-CSF) on anti-mycobacterial immunity in M. bovis BCG infected mice. Exposure of M. bovis BCG infected mice to AdGM-CSF either applied on 6h, or 6h and 7days post-infection substantially increased alveolar recruitment of iNOS and IL-12 expressing macrophages, and significantly increased accumulation of IFNγpos T cells and particularly regulatory T cells (Tregs). This was accompanied by significantly reduced mycobacterial loads in the lungs of mice. Importantly, diphtheria toxin-induced depletion of Tregs did not influence mycobacterial loads, but accentuated immunopathology in AdGM-CSF-exposed mice infected with M. bovis BCG. Together, the data demonstrate that AdGM-CSF therapy improves lung protective immunity against M. bovis BCG infection in mice independent of co-recruited Tregs, which however critically contribute to limit lung immunopathology in BCG-infected mice. These data may be relevant to the development of immunomodulatory strategies to limit immunopathology-based lung injury in tuberculosis in humans.
    • The adjuvant effect of TLR agonists on CD4(+) effector T cells is under the indirect control of regulatory T cells.

      Olivier, Aurélie; Sainz-Perez, Alexander; Dong, Hui; Sparwasser, Tim; Majlessi, Laleh; Leclerc, Claude; Department of Immunology, Paris, France. (2011-08)
      TLR agonists have been suggested to directly impact Tregs, thereby enhancing or reversing their suppressive function. Here, in order to select TLR agonists leading to potent effector T-cell responses, while minimizing Treg inhibitory function, we used a model antigen, covalently linked to an inert delivery system, combined with a large panel of TLR agonists, for the immunization of mice with an attenuated/depleted or intact Treg subset. We observed that the negative modulation of effector CD4(+) T cells exerted by Tregs cannot be circumvented, whatever the TLR agonist used as adjuvant. To better understand the impact of TLR agonists on Tregs, we investigated (i) the TLR expression profile of highly purified CD4(+) Foxp3(+) Tregs, at steady state or subsequent to in vivo activation by TLR agonists and (ii) the Treg phenotype after in vivo and in vitro activation by TLR agonists. Our results demonstrate that TLR agonists, as single signal inducers, are not able to directly activate Tregs. The phenotypic Treg activation observed in vivo, following TLR administration, does not result from cross-talk with conventional T cells but is rather a consequence of the interaction with other immune cell type(s).
    • Advantages of Foxp3(+) regulatory T cell depletion using DEREG mice.

      Mayer, Christian T; Lahl, Katharina; Milanez-Almeida, Pedro; Watts, Deepika; Dittmer, Ulf; Fyhrquist, Nanna; Huehn, Jochen; Kopf, Manfred; Kretschmer, Karsten; Rouse, Barry; et al. (2014-11)
      Several mechanisms enable immunological self-tolerance. Regulatory T cells (Tregs) are a specialized T cell subset that prevents autoimmunity and excessive immune responses, but can also mediate detrimental tolerance to tumors and pathogens in a Foxp3-dependent manner. Genetic tools exploiting the foxp3 locus including bacterial artificial chromosome (BAC)-transgenic DEREG mice have provided essential information on Treg biology and the potential therapeutic modulation of tolerance. In DEREG mice, Foxp3(+) Tregs selectively express eGFP and diphtheria toxin (DT) receptor, allowing for the specific depletion of Tregs through DT administration. We here provide a detailed overview about important considerations such as DT toxicity, which affects any mouse strain treated with DT, and Treg rebound after depletion. Additionally, we point out the specific advantages of BAC-transgenic DEREG mice including their suitability to study organ-specific autoimmunity such as type I diabetes. Moreover, we discuss recent insights into the role of Tregs in viral infections. In summary, DEREG mice are an important tool to study Treg-mediated tolerance and its therapeutic circumvention.
    • Antigen receptor-mediated depletion of FOXP3 in induced regulatory T-lymphocytes via PTPN2 and FOXO1

      Bothur, Evita; Raifer, Hartmann; Haftmann, Claudia; Stittrich, Anna-Barbara; Brüstle, Anne; Brenner, Dirk; Bollig, Nadine; Bieringer, Maria; Kang, Chol-Ho; Reinhard, Katharina; et al. (2015-10-13)
    • Antigen targeting to dendritic cells combined with transient regulatory T cell inhibition results in long-term tumor regression.

      Unger, Wendy Wj; Mayer, Christian T; Engels, Steef; Hesse, Christina; Perdicchio, Maurizio; Puttur, Franz; Streng-Ouwehand, Ingeborg; Litjens, Manja; Kalay, Hakan; Berod, Luciana; et al. (2015-08)
      Therapeutic vaccinations against cancer are still largely ineffective. Major caveats are inefficient delivery of tumor antigens to dendritic cells (DCs) and excessive immune suppression by Foxp3(+) regulatory T cells (Tregs), resulting in defective T cell priming and failure to induce tumor regression. To circumvent these problems we evaluated a novel combinatorial therapeutic strategy. We show that tumor antigen targeting to DC-SIGN in humanized hSIGN mice via glycans or specific antibodies induces superior T cell priming. Next, this targeted therapy was combined with transient Foxp3(+) Treg depletion employing hSIGNxDEREG mice. While Treg depletion alone slightly delayed B16-OVA melanoma growth, only the combination therapy instigated long-term tumor regression in a substantial fraction of mice. This novel strategy resulted in optimal generation of antigen-specific activated CD8(+) T cells which accumulated in regressing tumors. Notably, Treg depletion also allowed the local appearance of effector T cells specific for endogenous B16 antigens. This indicates that antitumor immune responses can be broadened by therapies aimed at controlling Tregs in tumor environments. Thus, transient inhibition of Treg-mediated immune suppression potentiates DC targeted antigen vaccination and tumor-specific immunity.
    • C-X-C Motif Chemokine Receptor 4 Blockade Promotes Tissue Repair After Myocardial Infarction by Enhancing Regulatory T Cell Mobilization and Immune-Regulatory Function.

      Wang, Yong; Dembowsky, Klaus; Chevalier, Eric; Stüve, Philipp; Korf-Klingebiel, Mortimer; Lochner, Matthias; Napp, L Christian; Frank, Heike; Brinkmann, Eva; Kanwischer, Anna; et al. (Lippinscott, Williams & Wilkins; American Heart Association, 2019-01-30)
      Acute myocardial infarction (MI) elicits an inflammatory response that drives tissue repair and adverse cardiac remodeling. Inflammatory cell trafficking after MI is controlled by C X-C motif chemokine ligand 12 (CXCL12) and its receptor, C-X-C motif chemokine receptor 4 (CXCR4). CXCR4 antagonists mobilize inflammatory cells and promote infarct repair, but the cellular mechanisms are unclear. We investigated the therapeutic potential and mode of action of the peptidic macrocycle CXCR4 antagonist POL5551 in mice with reperfused MI. We applied cell depletion and adoptive transfer strategies using lymphocyte-deficient Rag1 knockout mice; DEREG mice, which express a diphtheria toxin receptor-enhanced green fluorescent protein fusion protein under the control of the promoter/enhancer region of the regulatory T (T Intraperitoneal POL5551 injections in wild-type mice (8 mg/kg at 2, 4, 6, and 8 d) enhanced angiogenesis in the infarct border-zone, reduced scar size, and attenuated left ventricular remodeling and contractile dysfunction at 28 d. Treatment effects were absent in splenectomized wild-type mice, Rag1 knockout mice, and T Our data confirm CXCR4 blockade as a promising treatment strategy after MI. We identify dendritic cell-primed splenic T
    • CD4 blockade directly inhibits mouse and human CD4(+) T cell functions independent of Foxp3(+) Tregs.

      Mayer, C T; Huntenburg, J; Nandan, A; Schmitt, E; Czeloth, N; Sparwasser, Tim (Elsevier Science, 2013-12)
      CD4(+) helper T cells orchestrate protective immunity against pathogens, yet can also induce undesired pathologies including allergies, transplant rejection and autoimmunity. Non-depleting CD4-specific antibodies such as clone YTS177.9 were found to promote long-lasting T cell tolerance in animal models. Thus, CD4 blockade could represent a promising therapeutic approach for human autoimmune diseases. However, the mechanisms underlying anti-CD4-induced tolerance are incompletely resolved. Particularly, multiple immune cells express CD4 including Foxp3(+) regulatory T cells (Tregs) and dendritic cells (DCs), both controlling the activation of CD4(+)Foxp3(-) helper T cells. Utilizing mixed leukocyte reactions (MLRs) reflecting physiological interactions between T cells and DCs, we report that anti-CD4 treatment inhibits CD4(+)Foxp3(-) T cell proliferation in an IL-2-independent fashion. Notably, YTS177.9 binding induces a rapid internalization of CD4 on both CD4(+)Foxp3(-) T cells and Foxp3(+) Tregs. However, no expansion or activation of immunosuppressive CD4(+)Foxp3(+) Tregs was observed following anti-CD4 treatment. Additionally, cytokine production, maturation and T cell priming capacity of DCs are not affected by anti-CD4 exposure. In line with these data, the selective ablation of Foxp3(+) Tregs from MLRs by the use of diphtheria toxin (DT)-treated bacterial artificial chromosome (BAC)-transgenic DEREG mice completely fails to abrogate the suppressive activity of multiple anti-CD4 antibodies. Instead, tolerization is associated with the defective expression of various co-stimulatory receptors including OX40 and CD30, suggesting altered signaling through the TCR complex. Consistent with our findings in mice, anti-CD4 treatment renders human CD4(+) T cells tolerant in the absence of Tregs. Thus, our results establish that anti-CD4 antibodies can directly tolerize pathogenic CD4(+)Foxp3(-) helper T cells. This has important implications for the treatment of human inflammatory diseases.
    • CD4+ natural regulatory T cells prevent experimental cerebral malaria via CTLA-4 when expanded in vivo.

      Haque, Ashraful; Best, Shannon E; Amante, Fiona H; Mustafah, Seri; Desbarrieres, Laure; de Labastida, Fabian; Sparwasser, Tim; Hill, Geoffrey R; Engwerda, Christian R (2010)
      Studies in malaria patients indicate that higher frequencies of peripheral blood CD4(+) Foxp3(+) CD25(+) regulatory T (Treg) cells correlate with increased blood parasitemia. This observation implies that Treg cells impair pathogen clearance and thus may be detrimental to the host during infection. In C57BL/6 mice infected with Plasmodium berghei ANKA, depletion of Foxp3(+) cells did not improve parasite control or disease outcome. In contrast, elevating frequencies of natural Treg cells in vivo using IL-2/anti-IL-2 complexes resulted in complete protection against severe disease. This protection was entirely dependent upon Foxp3(+) cells and resulted in lower parasite biomass, impaired antigen-specific CD4(+) T and CD8(+) T cell responses that would normally promote parasite tissue sequestration in this model, and reduced recruitment of conventional T cells to the brain. Furthermore, Foxp3(+) cell-mediated protection was dependent upon CTLA-4 but not IL-10. These data show that T cell-mediated parasite tissue sequestration can be reduced by regulatory T cells in a mouse model of malaria, thereby limiting malaria-induced immune pathology.
    • CD4+CD25+ regulatory T cells control CD8+ T-cell effector differentiation by modulating IL-2 homeostasis.

      McNally, Alice; Hill, Geoffrey R; Sparwasser, Tim; Thomas, Ranjeny; Steptoe, Raymond J; University of Queensland Diamantina Institute, University of Queensland, Brisbane 4072, Australia. (2011-05-03)
      CD4(+)CD25(+) regulatory T cells (Treg) play a crucial role in the regulation of immune responses. Although many mechanisms of Treg suppression in vitro have been described, the mechanisms by which Treg modulate CD8(+) T cell differentiation and effector function in vivo are more poorly defined. It has been proposed, in many instances, that modulation of cytokine homeostasis could be an important mechanism by which Treg regulate adaptive immunity; however, direct experimental evidence is sparse. Here we demonstrate that CD4(+)CD25(+) Treg, by critically regulating IL-2 homeostasis, modulate CD8(+) T-cell effector differentiation. Expansion and effector differentiation of CD8(+) T cells is promoted by autocrine IL-2 but, by competing for IL-2, Treg limit CD8(+) effector differentiation. Furthermore, a regulatory loop exists between Treg and CD8(+) effector T cells, where IL-2 produced during CD8(+) T-cell effector differentiation promotes Treg expansion.
    • Characterization of Clostridioides difficile DSM 101085 with A-B-CDT+ Phenotype from a Late Recurrent Colonization.

      Riedel, Thomas; Neumann-Schaal, Meina; Wittmann, Johannes; Schober, Isabel; Hofmann, Julia Danielle; Lu, Chia-Wen; Dannheim, Antonia; Zimmermann, Ortrud; Lochner, Matthias; Groß, Uwe; et al. (Oxford University Press, 2020)
    • Characterization of the interferon-producing cell in mice infected with Listeria monocytogenes.

      Stockinger, Silvia; Kastner, Renate; Kernbauer, Elisabeth; Pilz, Andreas; Westermayer, Sandra; Reutterer, Benjamin; Soulat, Didier; Stengl, Gabriele; Vogl, Claus; Frenz, Theresa; et al. (2009-03)
      Production of type I interferons (IFN-I, mainly IFNalpha and IFNbeta) is a hallmark of innate immune responses to all classes of pathogens. When viral infection spreads to lymphoid organs, the majority of systemic IFN-I is produced by a specialized "interferon-producing cell" (IPC) that has been shown to belong to the lineage of plasmacytoid dendritic cells (pDC). It is unclear whether production of systemic IFN-I is generally attributable to pDC irrespective of the nature of the infecting pathogen. We have addressed this question by studying infections of mice with the intracellular bacterium Listeria monocytogenes. Protective innate immunity against this pathogen is weakened by IFN-I activity. In mice infected with L. monocytogenes, systemic IFN-I was amplified via IFN-beta, the IFN-I receptor (IFNAR), and transcription factor interferon regulatory factor 7 (IRF7), a molecular circuitry usually characteristic of non-pDC producers. Synthesis of serum IFN-I did not require TLR9. In contrast, in vitro-differentiated pDC infected with L. monocytogenes needed TLR9 to transcribe IFN-I mRNA. Consistent with the assumption that pDC are not the producers of systemic IFN-I, conditional ablation of the IFN-I receptor in mice showed that most systemic IFN-I is produced by myeloid cells. Furthermore, results obtained with FACS-purified splenic cell populations from infected mice confirmed the assumption that a cell type with surface antigens characteristic of macrophages and not of pDC is responsible for bulk IFN-I synthesis. The amount of IFN-I produced in the investigated mouse lines was inversely correlated to the resistance to lethal infection. Based on these data, we propose that the engagement of pDC, the mode of IFN-I mobilization, as well as the shaping of the antimicrobial innate immune response by IFN-I differ between intracellular pathogens.
    • Combination of nanoparticle-based therapeutic vaccination and transient ablation of regulatory T cells enhances anti-viral immunity during chronic retroviral infection.

      Knuschke, Torben; Rotan, Olga; Bayer, Wibke; Sokolova, Viktoriya; Hansen, Wiebke; Sparwasser, Tim; Dittmer, Ulf; Epple, Matthias; Buer, Jan; Westendorf, Astrid M; et al. (2016)
      Regulatory T cells (Tregs) have been shown to limit anti-viral immunity during chronic retroviral infection and to restrict vaccine-induced T cell responses. The objective of the study was to assess whether a combinational therapy of nanoparticle-based therapeutic vaccination and concomitant transient ablation of Tregs augments anti-viral immunity and improves virus control in chronically retrovirus-infected mice. Therefore, chronically Friend retrovirus (FV)-infected mice were immunized with calcium phosphate (CaP) nanoparticles functionalized with TLR9 ligand CpG and CD8(+) or CD4(+) T cell epitope peptides (GagL85-93 or Env gp70123-141) of FV. In addition, Tregs were ablated during the immunization process. Reactivation of CD4(+) and CD8(+) effector T cells was analysed and the viral loads were determined.
    • Conventional Dendritic Cells Confer Protection against Mouse Cytomegalovirus Infection via TLR9 and MyD88 Signaling.

      Puttur, Franz; Francozo, Marcela; Solmaz, Gülhas; Bueno, Carlos; Lindenberg, Marc; Gohmert, Melanie; Swallow, Maxine; Tufa, Dejene; Jacobs, Roland; Lienenklaus, Stefan; et al. (2016-10-18)
      Cytomegalovirus (CMV) is an opportunistic virus severely infecting immunocompromised individuals. In mice, endosomal Toll-like receptor 9 (TLR9) and downstream myeloid differentiation factor 88 (MyD88) are central to activating innate immune responses against mouse CMV (MCMV). In this respect, the cell-specific contribution of these pathways in initiating anti-MCMV immunity remains unclear. Using transgenic mice, we demonstrate that TLR9/MyD88 signaling selectively in CD11c(+) dendritic cells (DCs) strongly enhances MCMV clearance by boosting natural killer (NK) cell CD69 expression and IFN-γ production. In addition, we show that in the absence of plasmacytoid DCs (pDCs), conventional DCs (cDCs) promote robust NK cell effector function and MCMV clearance in a TLR9/MyD88-dependent manner. Simultaneously, cDC-derived IL-15 regulates NK cell degranulation by TLR9/MyD88-independent mechanisms. Overall, we compartmentalize the cellular contribution of TLR9 and MyD88 signaling in individual DC subsets and evaluate the mechanism by which cDCs control MCMV immunity.
    • Cytokines, Antibodies, and Histopathological Profiles during Giardia Infection and Variant-Specific Surface Protein-Based Vaccination.

      Serradell, Marianela C; Gargantini, Pablo R; Saura, Alicia; Oms, Sergio R; Rupil, Lucía L; Berod, Luciana; Sparwasser, Tim; Luján, Hugo D; TWINCORE, Zentrum für experimentelle und klinischeInfektionsforschung GmbH, Feodor-Lynen-Str. 7, 30625 Hannover, Germany. (2018-06-01)
      Giardiasis is one of the most common human intestinal diseases worldwide. Several experimental animal models have been used to evaluate
    • Depletion of FOXP3+ regulatory T cells promotes hypercholesterolemia and atherosclerosis.

      Klingenberg, Roland; Gerdes, Norbert; Badeau, Robert M; Gisterå, Anton; Strodthoff, Daniela; Ketelhuth, Daniel F J; Lundberg, Anna M; Rudling, Mats; Nilsson, Stefan K; Olivecrona, Gunilla; et al. (2013-03-01)
      Atherosclerosis is a chronic inflammatory disease promoted by hyperlipidemia. Several studies support FOXP3-positive regulatory T cells (Tregs) as inhibitors of atherosclerosis; however, the mechanism underlying this protection remains elusive. To define the role of FOXP3-expressing Tregs in atherosclerosis, we used the DEREG mouse, which expresses the diphtheria toxin (DT) receptor under control of the Treg-specific Foxp3 promoter, allowing for specific ablation of FOXP3+ Tregs. Lethally irradiated, atherosclerosis-prone, low-density lipoprotein receptor-deficient (Ldlr(-/-)) mice received DEREG bone marrow and were injected with DT to eliminate FOXP3(+) Tregs. Depletion of Tregs caused a 2.1-fold increase in atherosclerosis without a concomitant increase in vascular inflammation. These mice also exhibited a 1.7-fold increase in plasma cholesterol and an atherogenic lipoprotein profile with increased levels of VLDL. Clearance of VLDL and chylomicron remnants was hampered, leading to accumulation of cholesterol-rich particles in the circulation. Functional and protein analyses complemented by gene expression array identified reduced protein expression of sortilin-1 in liver and increased plasma enzyme activity of lipoprotein lipase, hepatic lipase, and phospholipid transfer protein as mediators of the altered lipid phenotype. These results demonstrate that FOXP3(+) Tregs inhibit atherosclerosis by modulating lipoprotein metabolism.