• A dual-species co-cultivation system to study the interactions between Roseobacters and dinoflagellates

      Wang, Hui; Tomasch, Jürgen; Jarek, Michael; Wagner-Döbler, Irene (2014-07-11)
    • Adaptation to Photooxidative Stress: Common and Special Strategies of the Alphaproteobacteria Rhodobacter sphaeroides and Rhodobacter capsulatus .

      Licht, Mathieu K; Nuss, Aaron M; Volk, Marcel; Konzer, Anne; Beckstette, Michael; Berghoff, Bork A; Klug, Gabriele; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (MDPI, 2020-02-19)
      Photosynthetic bacteria have to deal with the risk of photooxidative stress that occurs in presence of light and oxygen due to the photosensitizing activity of (bacterio-) chlorophylls. Facultative phototrophs of the genus Rhodobacter adapt the formation of photosynthetic complexes to oxygen and light conditions, but cannot completely avoid this stress if environmental conditions suddenly change. R. capsulatus has a stronger pigmentation and faster switches to phototrophic growth than R. sphaeroides. However, its photooxidative stress response has not been investigated. Here, we compare both species by transcriptomics and proteomics, revealing that proteins involved in oxidation-reduction processes, DNA, and protein damage repair play pivotal roles. These functions are likely universal to many phototrophs. Furthermore, the alternative sigma factors RpoE and RpoHII are induced in both species, even though the genetic localization of the rpoE gene, the RpoE protein itself, and probably its regulon, are different. Despite sharing the same habitats, our findings also suggest individual strategies. The crtIB-tspO operon, encoding proteins for biosynthesis of carotenoid precursors and a regulator of photosynthesis, and cbiX, encoding a putative ferrochelatase, are induced in R. capsulatus. This specific response might support adaptation by maintaining high carotenoid-to-bacteriochlorophyll ratios and preventing the accumulation of porphyrin-derived photosensitizers.
    • The alarmones (p)ppGpp are part of the heat shock response of Bacillus subtilis.

      Schäfer, Heinrich; Beckert, Bertrand; Frese, Christian K; Steinchen, Wieland; Nuss, Aaron M; Beckstette, Michael; Hantke, Ingo; Driller, Kristina; Sudzinová, Petra; Krásný, Libor; et al. (PLOS, 2020-03-16)
      Bacillus subtilis cells are well suited to study how bacteria sense and adapt to proteotoxic stress such as heat, since temperature fluctuations are a major challenge to soil-dwelling bacteria. Here, we show that the alarmones (p)ppGpp, well known second messengers of nutrient starvation, are also involved in the heat stress response as well as the development of thermo-resistance. Upon heat-shock, intracellular levels of (p)ppGpp rise in a rapid but transient manner. The heat-induced (p)ppGpp is primarily produced by the ribosome-associated alarmone synthetase Rel, while the small alarmone synthetases RelP and RelQ seem not to be involved. Furthermore, our study shows that the generated (p)ppGpp pulse primarily acts at the level of translation, and only specific genes are regulated at the transcriptional level. These include the down-regulation of some translation-related genes and the up-regulation of hpf, encoding the ribosome-protecting hibernation-promoting factor. In addition, the alarmones appear to interact with the activity of the stress transcription factor Spx during heat stress. Taken together, our study suggests that (p)ppGpp modulates the translational capacity at elevated temperatures and thereby allows B. subtilis cells to respond to proteotoxic stress, not only by raising the cellular repair capacity, but also by decreasing translation to concurrently reduce the protein load on the cellular protein quality control system.
    • The Alternative Sigma Factor SigX Controls Bacteriocin Synthesis and Competence, the Two Quorum Sensing Regulated Traits in Streptococcus mutans.

      Reck, Michael; Tomasch, Jürgen; Wagner-Döbler, Irene; Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany. (2015-07)
      Two small quorum sensing (QS) peptides regulate competence in S. mutans in a cell density dependent manner: XIP (sigX inducing peptide) and CSP (competence stimulating peptide). Depending on the environmental conditions isogenic S. mutans cells can split into a competent and non-competent subpopulation. The origin of this population heterogeneity has not been experimentally determined and it is unknown how the two QS systems are connected. We developed a toolbox of single and dual fluorescent reporter strains and systematically knocked out key genes of the competence signaling cascade in the reporter strain backgrounds. By following signal propagation on the single cell level we discovered that the master regulator of competence, the alternative sigma factor SigX, directly controls expression of the response regulator for bacteriocin synthesis ComE. Consequently, a SigX binding motif (cin-box) was identified in the promoter region of comE. Overexpressing the genetic components involved in competence development demonstrated that ComRS represents the origin of bimodality and determines the modality of the downstream regulators SigX and ComE. Moreover these analysis showed that there is no direct regulatory link between the two QS signaling cascades. Competence is induced through a hierarchical XIP signaling cascade, which has no regulatory input from the CSP cascade. CSP exclusively regulates bacteriocin synthesis. We suggest renaming it mutacin inducing peptide (MIP). Finally, using phosphomimetic comE mutants we show that unimodal bacteriocin production is controlled posttranslationally, thus solving the puzzling observation that in complex media competence is observed in a subpopulation only, while at the same time all cells produce bacteriocins. The control of both bacteriocin synthesis and competence through the alternative sigma-factor SigX suggests that S. mutans increases its genetic repertoire via QS controlled predation on neighboring species in its natural habitat.
    • Analysing traces of autoinducer-2 requires standardization of the Vibrio harveyi bioassay.

      Vilchez, Ramiro; Lemme, André; Thiel, Verena; Schulz, Stefan; Sztajer, Helena; Wagner-Döbler, Irene (2007-01-01)
      Autoinducer-2 (furanosyl borate diester) is a biologically active compound whose role as a universal bacterial signalling molecule is currently under intense investigation. Because of its instability and the low concentrations of it found in biological samples, its detection relies at present on a bioassay that measures the difference in the timing of the luminescence of the Vibrio harveyi BB170 sensor strain with and without externally added AI-2. Here we systematically investigated which parameters affected the fold induction values of luminescence obtained in the bioassay and developed a modified protocol. Our experiments showed that growth and luminescence of V. harveyi BB170 are strongly influenced by trace elements. In particular, addition of Fe(3+) within a certain concentration range to the growth medium of the preinoculum culture improved the reproducibility and reduced the variance of the bioassay. In contrast, trace elements and vitamins introduced directly into the bioassay caused inhibitory effects. The initial density and luminescence of the sensor strain are very important and the values required for these parameters were defined. Borate interferes with the detection of AI-2 by giving false positive results. The response of V. harveyi BB170 to chemically synthesized AI-2 in the bioassay is nonlinear except over a very small concentration range; it is maximum over three orders of magnitude and shows inhibition above 35 microM. Based on the modified protocol, we were able to detect AI-2 in the absence of inhibitors with maximum fold induction values for the positive control (chemically synthesized AI-2) of >120 with a standard deviation of approximately 30% in a reliable and reproducible way.
    • Anti-virulence Strategies to Target Bacterial Infections.

      Mühlen, Sabrina; Dersch, Petra; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2016)
      Resistance of important bacterial pathogens to common antimicrobial therapies and the emergence of multidrug-resistant bacteria are increasing at an alarming rate and constitute one of our greatest challenges in the combat of bacterial infection and accompanied diseases. The current shortage of effective drugs, lack of successful prevention measures and only a few new antibiotics in the clinical pipeline demand the development of novel treatment options and alternative antimicrobial therapies. Our increasing understanding of bacterial virulence strategies and the induced molecular pathways of the infectious disease provides novel opportunities to target and interfere with crucial pathogenicity factors or virulence-associated traits of the bacteria while bypassing the evolutionary pressure on the bacterium to develop resistance. In the past decade, numerous new bacterial targets for anti-virulence therapies have been identified, and structure-based tailoring of intervention strategies and screening assays for small-molecule inhibitors of such pathways were successfully established. In this chapter, we will take a closer look at the bacterial virulence-related factors and processes that present promising targets for anti-virulence therapies, recently discovered inhibitory substances and their promises and discuss the challenges, and problems that have to be faced.
    • Aspherical and Spherical InvA497-Functionalized Nanocarriers for Intracellular Delivery of Anti-Infective Agents.

      Castoldi, Arianna; Empting, Martin; De Rossi, Chiara; Mayr, Karsten; Dersch, Petra; Hartmann, Rolf; Müller, Rolf; Gordon, Sarah; Lehr, Claus-Michael; HIPS, Helmholtz-Institut für Pharmazeutische Forschung Saarland, Universitätscampus E8.1 66123 Saarbrücken, Germany. (Springer, 2018-12-05)
      The objective of this work was to evaluate the potential of polymeric spherical and aspherical invasive nanocarriers, loaded with antibiotic, to access and treat intracellular bacterial infections. Aspherical nanocarriers were prepared by stretching of spherical precursors, and both aspherical and spherical nanocarriers were surface-functionalized with the invasive protein InvA497. The relative uptake of nanocarriers into HEp-2 epithelial cells was then assessed. Nanocarriers were subsequently loaded with a preparation of the non-permeable antibiotic gentamicin, and tested for their ability to treat HEp-2 cells infected with the enteroinvasive bacterium Shigella flexneri. InvA497-functionalized nanocarriers of both spherical and aspherical shape showed a significantly improved rate and extent of uptake into HEp-2 cells in comparison to non-functionalized nanocarriers. Functionalized and antibiotic-loaded nanocarriers demonstrated a dose dependent killing of intracellular S. flexneri. A slight but significant enhancement of intracellular bacterial killing was also observed with aspherical as compared to spherical functionalized nanocarriers at the highest tested concentration. InvA497-functionalized, polymer-based nanocarriers were able to efficiently deliver a non-permeable antibiotic across host cell membranes to affect killing of intracellular bacteria. Functionalized nanocarriers with an aspherical shape showed an interesting future potential for intracellular infection therapy.
    • ATPase-Independent Type-III Protein Secretion in Salmonella enterica.

      Erhardt, Marc; Mertens, Max E; Fabiani, Florian D; Hughes, Kelly T (2014-11)
      Type-III protein secretion systems are utilized by gram-negative pathogens to secrete building blocks of the bacterial flagellum, virulence effectors from the cytoplasm into host cells, and structural subunits of the needle complex. The flagellar type-III secretion apparatus utilizes both the energy of the proton motive force and ATP hydrolysis to energize substrate unfolding and translocation. We report formation of functional flagella in the absence of type-III ATPase activity by mutations that increased the proton motive force and flagellar substrate levels. We additionally show that increased proton motive force bypassed the requirement of the Salmonella pathogenicity island 1 virulence-associated type-III ATPase for secretion. Our data support a role for type-III ATPases in enhancing secretion efficiency under limited secretion substrate concentrations and reveal the dispensability of ATPase activity in the type-III protein export process.
    • Autoinducer-2-regulated genes in Streptococcus mutans UA159 and global metabolic effect of the luxS mutation.

      Sztajer, Helena; Lemme, André; Vilchez, Ramiro; Schulz, Stefan; Geffers, Robert; Yip, Cindy Ying Yin; Levesque, Celine M; Cvitkovitch, Dennis G; Wagner-Döbler, Irene; Helmholtz-Center for Infection Research, Division of Cell Biology, Inhoffenstr. 7, D-38124 Braunschweig, Germany. (2008-01)
      Autoinducer 2 (AI-2) is the only species-nonspecific autoinducer known in bacteria and is produced by both gram-negative and gram-positive organisms. Consequently, it is proposed to function as a universal quorum-sensing signal for interaction between bacterial species. AI-2 is produced as the by-product of a metabolic transformation carried out by the LuxS enzyme. To separate the metabolic function of the LuxS enzyme from the signaling role of AI-2, we carried out a global transcriptome analysis of a luxS null mutant culture of Streptococcus mutans UA159, an important cariogenic bacterium and a crucial component of the dental plaque biofilm community, in comparison to a luxS null mutant culture supplemented with chemically pure 4,5-dihydroxy-2,3-pentanedione, the precursor of AI-2. The data revealed fundamental changes in gene expression affecting 585 genes (30% of the genome) which could not be restored by the signal molecule AI-2 and are therefore not caused by quorum sensing but by lack of the transformation carried out by the LuxS enzyme in the activated methyl cycle. All functional classes of enzymes were affected, including genes known to be important for biofilm formation, bacteriocin synthesis, competence, and acid tolerance. At the same time, 59 genes were identified whose transcription clearly responded to the addition of AI-2. Some of them were related to protein synthesis, stress, and cell division. Three membrane transport proteins were upregulated which are not related to any of the known AI-2 transporters. Three transcription factors were identified whose transcription was stimulated repeatedly by AI-2 addition during growth. Finally, a global regulatory protein, the delta subunit of the RNA polymerase (rpoE), was induced 147-fold by AI-2, representing the largest differential gene expression observed. The data show that many phenotypes related to the luxS mutation cannot be ascribed to quorum sensing and have identified for the first time regulatory proteins potentially mediating AI-2-based signaling in gram-positive bacteria.
    • Bacterial flagella grow through an injection-diffusion mechanism.

      Renault, Thibaud T; Abraham, Anthony O; Bergmiller, Tobias; Paradis, Guillaume; Rainville, Simon; Charpentier, Emmanuelle; Guet, Călin C; Tu, Yuhai; Namba, Keiichi; Keener, James P; et al. (2017-03-06)
      The bacterial flagellum is a self-assembling nanomachine. The external flagellar filament, several times longer than a bacterial cell body, is made of a few tens of thousands subunits of a single protein: flagellin. A fundamental problem concerns the molecular mechanism of how the flagellum grows outside the cell, where no discernible energy source is available. Here, we monitored the dynamic assembly of individual flagella using in situ labelling and real-time immunostaining of elongating flagellar filaments. We report that the rate of flagellum growth, initially ∼1,700 amino acids per second, decreases with length and that the previously proposed chain mechanism does not contribute to the filament elongation dynamics. Inhibition of the proton motive force-dependent export apparatus revealed a major contribution of substrate injection in driving filament elongation. The combination of experimental and mathematical evidence demonstrates that a simple, injection-diffusion mechanism controls bacterial flagella growth outside the cell.
    • Bacterial invasion factors: Tools for crossing biological barriers and drug delivery?

      Kochut, Annika; Dersch, Petra; Department of Molecular Infection Biology, Helmholtz Center for Infection Research, Braunschweig, Germany. (2013-06)
      The oral route is the preferential route of drug delivery in humans. However, effective delivery through the gastrointestinal tract is often hampered by the low permeability of the intestinal epithelium. One possibility to overcome this problem is the encapsulation of drugs inside nanoparticulate systems, containing targeting moieties with cell invasive properties. The bioinvasive features of the delivery system could be provided by the attachment of bacterial invasion factors, which promote efficient uptake into host cells and mediate rapid transcytosis of the pathogen through the intestinal epithelium. This review gives an overview of bacterial invasion systems. The molecular structure and function of suitable bacterial invasins, their relative values as targeting agents and possible pitfalls of their use are described. The potential of bioinvasive drug delivery systems is mainly presented on the basis of the well-characterized Yersinia invasin protein, which enters M cells to gain access to subepithelial layers of the gastrointestinal tract, but alternative approaches and future prospects for oral drug delivery are also discussed.
    • A bacterial secreted translocator hijacks riboregulators to control type III secretion in response to host cell contact.

      Kusmierek, Maria; Hoßmann, Jörn; Witte, Rebekka; Opitz, Wiebke; Vollmer, Ines; Volk, Marcel; Heroven, Ann Kathrin; Wolf-Watz, Hans; Dersch, Petra; HZI, Helmholtz -Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany. (PLOS, 2019-06-01)
      Numerous Gram-negative pathogens use a Type III Secretion System (T3SS) to promote virulence by injecting effector proteins into targeted host cells, which subvert host cell processes. Expression of T3SS and the effectors is triggered upon host cell contact, but the underlying mechanism is poorly understood. Here, we report a novel strategy of Yersinia pseudotuberculosis in which this pathogen uses a secreted T3SS translocator protein (YopD) to control global RNA regulators. Secretion of the YopD translocator upon host cell contact increases the ratio of post-transcriptional regulator CsrA to its antagonistic small RNAs CsrB and CsrC and reduces the degradosome components PNPase and RNase E levels. This substantially elevates the amount of the common transcriptional activator (LcrF) of T3SS/Yop effector genes and triggers the synthesis of associated virulence-relevant traits. The observed hijacking of global riboregulators allows the pathogen to coordinate virulence factor expression and also readjusts its physiological response upon host cell contact.
    • Bacterioplankton Biogeography of the Atlantic Ocean: A Case Study of the Distance-Decay Relationship.

      Milici, Mathias; Tomasch, Jürgen; Wos-Oxley, Melissa L; Decelle, Johan; Jáuregui, Ruy; Wang, Hui; Deng, Zhi-Luo; Plumeier, Iris; Giebel, Helge-Ansgar; Badewien, Thomas H; et al. (2016)
      In order to determine the influence of geographical distance, depth, and Longhurstian province on bacterial community composition and compare it with the composition of photosynthetic micro-eukaryote communities, 382 samples from a depth-resolved latitudinal transect (51°S-47°N) from the epipelagic zone of the Atlantic ocean were analyzed by Illumina amplicon sequencing. In the upper 100 m of the ocean, community similarity decreased toward the equator for 6000 km, but subsequently increased again, reaching similarity values of 40-60% for samples that were separated by ~12,000 km, resulting in a U-shaped distance-decay curve. We conclude that adaptation to local conditions can override the linear distance-decay relationship in the upper epipelagial of the Atlantic Ocean which is apparently not restrained by barriers to dispersal, since the same taxa were shared between the most distant communities. The six Longhurstian provinces covered by the transect were comprised of distinct microbial communities; ~30% of variation in community composition could be explained by province. Bacterial communities belonging to the deeper layer of the epipelagic zone (140-200 m) lacked a distance-decay relationship altogether and showed little provincialism. Interestingly, those biogeographical patterns were consistently found for bacteria from three different size fractions of the plankton with different taxonomic composition, indicating conserved underlying mechanisms. Analysis of the chloroplast 16S rRNA gene sequences revealed that phytoplankton composition was strongly correlated with both free-living and particle associated bacterial community composition (R between 0.51 and 0.62, p < 0.002). The data show that biogeographical patterns commonly found in macroecology do not hold for marine bacterioplankton, most likely because dispersal and evolution occur at drastically different rates in bacteria.
    • The Binding Site of the V-ATPase Inhibitor Apicularen Is in the Vicinity of Those for Bafilomycin and Archazolid.

      Osteresch, Christin; Bender, Tobias; Grond, Stephanie; von Zezschwitz, Paultheo; Kunze, Brigitte; Jansen, Rolf; Huss, Markus; Wieczorek, Helmut; From the Fachbereich Biologie/Chemie, Abteilung Tierphysiologie, Universität Osnabrück, Barbarastrasse 11, 49069 Osnabrück. (2012-09-14)
      The investigation of V-ATPases as potential therapeutic drug targets and hence of their specific inhibitors is a promising approach in osteoporosis and cancer treatment because the occurrence of these diseases is interrelated to the function of the V-ATPase. Apicularen belongs to the novel inhibitor family of the benzolactone enamides, which are highly potent but feature the unique characteristic of not inhibiting V-ATPases from fungal sources. In this study we specify, for the first time, the binding site of apicularen within the membrane spanning V(O) complex. By photoaffinity labeling using derivatives of apicularen and of the plecomacrolides bafilomycin and concanamycin, each coupled to (14)C-labeled 4-(3-trifluoromethyldiazirin-3-yl)benzoic acid, we verified that apicularen binds at the interface of the V(O) subunits a and c. The binding site is in the vicinity to those of the plecomacrolides and of the archazolids, a third family of V-ATPase inhibitors. Expression of subunit c homologues from Homo sapiens and Manduca sexta, both species sensitive to benzolactone enamides, in a Saccharomyces cerevisiae strain lacking the corresponding intrinsic gene did not transfer this sensitivity to yeast. Therefore, the binding site of benzolactone enamides cannot be formed exclusively by subunit c. Apparently, subunit a substantially contributes to the binding of the benzolactone enamides.
    • The Biofilm Inhibitor Carolacton Enters Gram-Negative Cells: Studies Using a TolC-Deficient Strain of Escherichia coli.

      Donner, Jannik; Reck, Michael; Bunk, Boyke; Jarek, Michael; App, Constantin Benjamin; Meier-Kolthoff, Jan P; Overmann, Jörg; Müller, Rolf; Kirschning, Andreas; Wagner-Döbler, Irene; et al. (2017-11-01)
      The myxobacterial secondary metabolite carolacton inhibits growth of Streptococcus pneumoniae and kills biofilm cells of the caries- and endocarditis-associated pathogen Streptococcus mutans at nanomolar concentrations. Here, we studied the response to carolacton of an Escherichia coli strain that lacked the outer membrane protein TolC. Whole-genome sequencing of the laboratory E. coli strain TolC revealed the integration of an insertion element, IS5, at the tolC locus and a close phylogenetic relationship to the ancient E. coli K-12. We demonstrated via transcriptome sequencing (RNA-seq) and determination of MIC values that carolacton penetrates the phospholipid bilayer of the Gram-negative cell envelope and inhibits growth of E. coli TolC at similar concentrations as for streptococci. This inhibition is completely lost for a C-9 (R) epimer of carolacton, a derivative with an inverted stereocenter at carbon atom 9 [(S) → (R)] as the sole difference from the native molecule, which is also inactive in S. pneumoniae and S. mutans, suggesting a specific interaction of native carolacton with a conserved cellular target present in bacterial phyla as distantly related as Firmicutes and Proteobacteria. The efflux pump inhibitor (EPI) phenylalanine arginine β-naphthylamide (PAβN), which specifically inhibits AcrAB-TolC, renders E. coli susceptible to carolacton. Our data indicate that carolacton has potential for use in antimicrobial chemotherapy against Gram-negative bacteria, as a single drug or in combination with EPIs. Strain E. coli TolC has been deposited at the DSMZ; together with the associated RNA-seq data and MIC values, it can be used as a reference during future screenings for novel bioactive compounds. IMPORTANCE The emergence of pathogens resistant against most or all of the antibiotics currently used in human therapy is a global threat, and therefore the search for antimicrobials with novel targets and modes of action is of utmost importance. The myxobacterial secondary metabolite carolacton had previously been shown to inhibit biofilm formation and growth of streptococci. Here, we investigated if carolacton could act against Gram-negative bacteria, which are difficult targets because of their double-layered cytoplasmic envelope. We found that the model organism Escherichia coli is susceptible to carolacton, similar to the Gram-positive Streptococcus pneumoniae, if its multidrug efflux system AcrAB-TolC is either inactivated genetically, by disruption of the tolC gene, or physiologically by coadministering an efflux pump inhibitor. A carolacton epimer that has a different steric configuration at carbon atom 9 is completely inactive, suggesting that carolacton may interact with the same molecular target in both Gram-positive and Gram-negative bacteria.
    • The biofilm inhibitor Carolacton inhibits planktonic growth of virulent pneumococci via a conserved target.

      Donner, Jannik; Reck, Michael; Bergmann, Simone; Kirschning, Andreas; Müller, Rolf; Wagner-Döbler, Irene; Helmholtz Centre for infection research, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2016)
      New antibacterial compounds, preferentially exploiting novel cellular targets, are urgently needed to fight the increasing resistance of pathogens against conventional antibiotics. Here we demonstrate that Carolacton, a myxobacterial secondary metabolite previously shown to damage Streptococcus mutans biofilms, inhibits planktonic growth of Streptococcus pneumoniae TIGR4 and multidrug-resistant clinical isolates of serotype 19A at nanomolar concentrations. A Carolacton diastereomer is inactive in both streptococci, indicating a highly specific interaction with a conserved cellular target. S. mutans requires the eukaryotic-like serine/threonine protein kinase PknB and the cysteine metabolism regulator CysR for susceptibility to Carolacton, whereas their homologues are not needed in S. pneumoniae, suggesting a specific function for S. mutans biofilms only. A bactericidal effect of Carolacton was observed for S. pneumoniae TIGR4, with a reduction of cell numbers by 3 log units. The clinical pneumonia isolate Sp49 showed immediate growth arrest and cell lysis, suggesting a bacteriolytic effect of Carolacton. Carolacton treatment caused a reduction in membrane potential, but not membrane integrity, and transcriptome analysis revealed compensatory reactions of the cell. Our data show that Carolacton might have potential for treating pneumococcal infections.
    • Biofilm transplantation in the deep sea.

      Wagner-Döbler, Irene; Helmholtz Centre for infection research, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2016-05)
      A gold rush is currently going on in microbial ecology, which is powered by the possibility to determine the full complexity of microbial communities through next-generation sequencing. Accordingly, enormous efforts are underway to describe microbiomes worldwide, in humans, animals, plants, soil, air and the ocean. While much can be learned from these studies, only experiments will finally unravel mechanisms. One of the key questions is how a microbial community is assembled from a pool of bacteria in the environment, and how it responds to change - be it the increase in CO2 concentration in the ocean, or antibiotic treatment of the gut microbiome. The study by Zhang et al. () in this issue is one of the very few that approaches this problem experimentally in the natural environment. The authors selected a habitat which is both extremely interesting and difficult to access. They studied the Thuwal Seep in the Red Sea at 850 m depth and used a remotely operated vehicle (ROV) to place a steel frame carrying substrata for biofilm growth into the brine pool and into the adjacent normal bottom water (NBW). Biofilms were allowed to develop for 3 days, and then those that had been growing in the brine pool were transported to normal bottom water and stayed there for another 3 days, and vice versa. The 'switched' biofilms were then compared with their source communities by metagenome sequencing. Strikingly, both 'switched' biofilms were now dominated by the same two species. These species were able to cope with conditions in both source ecosystems, as shown by assembly of their genomes and detection of expression of key genes. The biofilms had adapted to environmental change, rather than to brine pools or NBW. The study shows both the resilience and adaptability of biofilm communities and has implications for microbial ecology in general and even for therapeutic approaches such as transplantation of faecal microbiomes.
    • Biogeography and phylogenetic diversity of a cluster of exclusively marine myxobacteria.

      Brinkhoff, Thorsten; Fischer, Doreen; Vollmers, John; Voget, Sonja; Beardsley, Christine; Thole, Sebastian; Mussmann, Marc; Kunze, Brigitte; Wagner-Döbler, Irene; Daniel, Rolf; et al. (2012-06)
      Myxobacteria are common in terrestrial habitats and well known for their formation of fruiting bodies and production of secondary metabolites. We studied a cluster of myxobacteria consisting only of sequences of marine origin (marine myxobacteria cluster, MMC) in sediments of the North Sea. Using a specific PCR, MMC sequences were detected in North Sea sediments down to 2.2 m depth, but not in the limnetic section of the Weser estuary and other freshwater habitats. In the water column, this cluster was only detected on aggregates up to a few meters above the sediment surface, but never in the fraction of free-living bacteria. A quantitative real-time PCR approach revealed that the MMC constituted up to 13% of total bacterial 16S rRNA genes in surface sediments of the North Sea. In a global survey, including sediments from the Mediterranean Sea, the Atlantic, Pacific and Indian Ocean and various climatic regions, the MMC was detected in most samples and to a water depth of 4300 m. Two fosmids of a library from sediment of the southern North Sea containing 16S rRNA genes affiliated with the MMC were sequenced. Both fosmids have a single unlinked 16S rRNA gene and no complete rRNA operon as found in most bacteria. No synteny to other myxobacterial genomes was found. The highest numbers of orthologues for both fosmids were assigned to Sorangium cellulosum and Haliangium ochraceum. Our results show that the MMC is an important and widely distributed but largely unknown component of marine sediment-associated bacterial communities.
    • Biological activity of volatiles from marine and terrestrial bacteria.

      Schulz, Stefan; Dickschat, Jeroen S; Kunze, Brigitte; Wagner-Döbler, Irene; Diestel, Randi; Sasse, Florenz; Institute of Organic Chemistry, University of Braunschweig-Institute of Technology, Hagenring 30, Braunschweig, Germany. Stefan.Schulz@tu-bs.de (2010)
      The antiproliferative activity of 52 volatile compounds released from bacteria was investigated in agar diffusion assays against medically important microorganisms and mouse fibroblasts. Furthermore, the activity of these compounds to interfere with the quorum-sensing-systems was tested with two different reporter strains. While some of the compounds specific to certain bacteria showed some activity in the antiproliferative assay, the compounds common to many bacteria were mostly inactive. In contrast, some of these compounds were active in the quorum-sensing-tests. γ-Lactones showed a broad reactivity, while pyrazines seem to have only low intrinsic activity. A general discussion on the ecological importance of these findings is given.
    • Bioorthogonal metabolic glycoengineering of human larynx carcinoma (HEp-2) cells targeting sialic acid.

      Homann, Arne; Qamar, Riaz-Ul; Serim, Sevnur; Dersch, Petra; Seibel, Jürgen; University of Würzburg, Department of Organic Chemistry, Am Hubland, 97074 Würzburg, Germany. (2010)
      Sialic acids are located at the termini of mammalian cell-surface glycostructures, which participate in essential interaction processes including adhesion of pathogens prior to infection and immunogenicity. Here we present the synthesis and bioorthogonal metabolic incorporation of the sialic acid analogue N-(1-oxohex-5-ynyl)neuraminic acid (Neu5Hex) into the cell-surface glycocalyx of a human larynx carcinoma cell line (HEp-2) and its fluorescence labelling by click chemistry.