ChIP-on-chip analysis identifies IL-22 as direct target gene of ectopically expressed FOXP3 transcription factor in human T cells

2.50
Hdl Handle:
http://hdl.handle.net/10033/621032
Title:
ChIP-on-chip analysis identifies IL-22 as direct target gene of ectopically expressed FOXP3 transcription factor in human T cells
Authors:
Jeron, Andreas; Hansen, Wiebke; Ewert, Franziska; Buer, Jan; Geffers, Robert; Bruder, Dunja
Abstract:
Abstract Background The transcription factor (TF) forkhead box P3 (FOXP3) is constitutively expressed at high levels in naturally occurring CD4+CD25+ regulatory T cells (nTregs). It is not only the most accepted marker for that cell population but is also considered lineage determinative. Chromatin immunoprecipitation (ChIP) of TFs in combination with genomic tiling microarray analysis (ChIP-on-chip) has been shown to be an appropriate tool for identifying FOXP3 transcription factor binding sites (TFBSs) on a genome-wide scale. In combination with microarray expression analysis, the ChIP-on-chip technique allows identification of direct FOXP3 target genes. Results ChIP-on-chip analysis of the human FOXP3 expressed in resting and PMA/ionomycin–stimulated Jurkat T cells revealed several thousand putative FOXP3 binding sites and demonstrated the importance of intronic regions for FOXP3 binding. The analysis of expression data showed that the stimulation-dependent down-regulation of IL-22 was correlated with direct FOXP3 binding in the IL-22 promoter region. This association was confirmed by real-time PCR analysis of ChIP-DNA. The corresponding ChIP-region also contained a matching FOXP3 consensus sequence. Conclusions Knowledge of the general distribution patterns of FOXP3 TFBSs in the human genome under resting and activated conditions will contribute to a better understanding of this TF and its influence on direct target genes, as well as its importance for the phenotype and function of Tregs. Moreover, FOXP3-dependent repression of Th17-related IL-22 may be relevant to an understanding of the phenomenon of Treg/Th17 cell plasticity.
Citation:
BMC Genomics. 2012 Dec 17;13(1):705
Issue Date:
17-Dec-2012
URI:
http://dx.doi.org/10.1186/1471-2164-13-705; http://hdl.handle.net/10033/621032
Type:
Journal Article
Appears in Collections:
publications of the research group immunoregulation (IREG); publications of the research group genomeanalytics (GMAK)

Full metadata record

DC FieldValue Language
dc.contributor.authorJeron, Andreasen
dc.contributor.authorHansen, Wiebkeen
dc.contributor.authorEwert, Franziskaen
dc.contributor.authorBuer, Janen
dc.contributor.authorGeffers, Roberten
dc.contributor.authorBruder, Dunjaen
dc.date.accessioned2017-08-02T09:06:27Z-
dc.date.available2017-08-02T09:06:27Z-
dc.date.issued2012-12-17en
dc.identifier.citationBMC Genomics. 2012 Dec 17;13(1):705en
dc.identifier.urihttp://dx.doi.org/10.1186/1471-2164-13-705en
dc.identifier.urihttp://hdl.handle.net/10033/621032-
dc.description.abstractAbstract Background The transcription factor (TF) forkhead box P3 (FOXP3) is constitutively expressed at high levels in naturally occurring CD4+CD25+ regulatory T cells (nTregs). It is not only the most accepted marker for that cell population but is also considered lineage determinative. Chromatin immunoprecipitation (ChIP) of TFs in combination with genomic tiling microarray analysis (ChIP-on-chip) has been shown to be an appropriate tool for identifying FOXP3 transcription factor binding sites (TFBSs) on a genome-wide scale. In combination with microarray expression analysis, the ChIP-on-chip technique allows identification of direct FOXP3 target genes. Results ChIP-on-chip analysis of the human FOXP3 expressed in resting and PMA/ionomycin–stimulated Jurkat T cells revealed several thousand putative FOXP3 binding sites and demonstrated the importance of intronic regions for FOXP3 binding. The analysis of expression data showed that the stimulation-dependent down-regulation of IL-22 was correlated with direct FOXP3 binding in the IL-22 promoter region. This association was confirmed by real-time PCR analysis of ChIP-DNA. The corresponding ChIP-region also contained a matching FOXP3 consensus sequence. Conclusions Knowledge of the general distribution patterns of FOXP3 TFBSs in the human genome under resting and activated conditions will contribute to a better understanding of this TF and its influence on direct target genes, as well as its importance for the phenotype and function of Tregs. Moreover, FOXP3-dependent repression of Th17-related IL-22 may be relevant to an understanding of the phenomenon of Treg/Th17 cell plasticity.en
dc.titleChIP-on-chip analysis identifies IL-22 as direct target gene of ectopically expressed FOXP3 transcription factor in human T cellsen
dc.typeJournal Articleen
dc.language.rfc3066enen
dc.rights.holderJeron et al.; licensee BioMed Central Ltd.en
dc.date.updated2015-09-04T08:23:08Zen
All Items in HZI are protected by copyright, with all rights reserved, unless otherwise indicated.