Now showing items 1-20 of 2492

    • Microbiome yarns: microbiome basis of memory,,.

      Timmis, Kenneth; Jebok, Franziska; Molinari, Gabriella; Rohde, Manfred; Timmis, James Kenneth; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2017-01-01)
    • Recent developments in the isolation, biological function, biosynthesis, and synthesis of phenazine natural products.

      Guttenberger, Nikolaus; Blankenfeldt, Wulf; Breinbauer, Rolf; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2017-11-15)
      Phenazines are natural products which are produced by bacteria or by archaeal Methanosarcina species. The tricyclic ring system enables redox processes, which producing organisms use for oxidation of NADH or for the generation of reactive oxygen species (ROS), giving them advantages over other microorganisms. In this review we summarize the progress in the field since 2005 regarding the isolation of new phenazine natural products, new insights in their biological function, and particularly the now almost completely understood biosynthesis. The review is complemented by a description of new synthetic methods and total syntheses of phenazines.
    • A Model for the Transient Subdiffusive Behavior of Particles in Mucus.

      Ernst, Matthias; John, Thomas; Guenther, Marco; Wagner, Christian; Schaefer, Ulrich F; Lehr, Claus-Michael; HIPS, Helmholtz-Institut für pharmazeutische Forschung Saarland, Universitätscampus 8.1, 66123 Saarbrücken, Germany. (2017-01-10)
      In this study we have applied a model to explain the reported subdiffusion of particles in mucus, based on the measured mean squared displacements (MSD). The model considers Brownian diffusion of particles in a confined geometry, made from permeable membranes. The applied model predicts a normal diffusive behavior at very short and long time lags, as observed in several experiments. In between these timescales, we find that the "subdiffusive" regime is only a transient effect, MSD∝τ
    • Genome-guided design of a defined mouse microbiota that confers colonization resistance against Salmonella enterica serovar Typhimurium.

      Brugiroux, Sandrine; Beutler, Markus; Pfann, Carina; Garzetti, Debora; Ruscheweyh, Hans-Joachim; Ring, Diana; Diehl, Manuel; Herp, Simone; Lötscher, Yvonne; Hussain, Saib; Bunk, Boyke; Pukall, Rüdiger; Huson, Daniel H; Münch, Philipp C; McHardy, Alice C; McCoy, Kathy D; Macpherson, Andrew J; Loy, Alexander; Clavel, Thomas; Berry, David; Stecher, Bärbel; BRICS, Braunschweiger Zentrum für Systembiologie, Rebenring 56, 38106 Braunschweig, Germany. (2016-11-21)
      Protection against enteric infections, also termed colonization resistance, results from mutualistic interactions of the host and its indigenous microbes. The gut microbiota of humans and mice is highly diverse and it is therefore challenging to assign specific properties to its individual members. Here, we have used a collection of murine bacterial strains and a modular design approach to create a minimal bacterial community that, once established in germ-free mice, provided colonization resistance against the human enteric pathogen Salmonella enterica serovar Typhimurium (S. Tm). Initially, a community of 12 strains, termed Oligo-Mouse-Microbiota (Oligo-MM
    • Lipoteichoic acid deficiency permits normal growth but impairs virulence of Streptococcus pneumoniae.

      Heß, Nathalie; Waldow, Franziska; Kohler, Thomas P; Rohde, Manfred; Kreikemeyer, Bernd; Gómez-Mejia, Alejandro; Hain, Torsten; Schwudke, Dominik; Vollmer, Waldemar; Hammerschmidt, Sven; Gisch, Nicolas; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2017-12-12)
      Teichoic acid (TA), a crucial cell wall constituent of the pathobiont Streptococcus pneumoniae, is bound to peptidoglycan (wall teichoic acid, WTA) or to membrane glycolipids (lipoteichoic acid, LTA). Both TA polymers share a common precursor synthesis pathway, but differ in the final transfer of the TA chain to either peptidoglycan or a glycolipid. Here, we show that LTA exhibits a different linkage conformation compared to WTA, and identify TacL (previously known as RafX) as a putative lipoteichoic acid ligase required for LTA assembly. Pneumococcal mutants deficient in TacL lack LTA and show attenuated virulence in mouse models of acute pneumonia and systemic infections, although they grow normally in culture. Hence, LTA is important for S. pneumoniae to establish systemic infections, and TacL represents a potential target for antimicrobial drug development.
    • Phylotranscriptomic consolidation of the jawed vertebrate timetree.

      Irisarri, Iker; Baurain, Denis; Brinkmann, Henner; Delsuc, Frédéric; Sire, Jean-Yves; Kupfer, Alexander; Petersen, Jörn; Jarek, Michael; Meyer, Axel; Vences, Miguel; Philippe, Hervé; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2017-09-01)
      Phylogenomics is extremely powerful but introduces new challenges as no agreement exists on "standards" for data selection, curation and tree inference. We use jawed vertebrates (Gnathostomata) as model to address these issues. Despite considerable efforts in resolving their evolutionary history and macroevolution, few studies have included a full phylogenetic diversity of gnathostomes and some relationships remain controversial. We tested a novel bioinformatic pipeline to assemble large and accurate phylogenomic datasets from RNA sequencing and find this phylotranscriptomic approach successful and highly cost-effective. Increased sequencing effort up to ca. 10Gbp allows recovering more genes, but shallower sequencing (1.5Gbp) is sufficient to obtain thousands of full-length orthologous transcripts. We reconstruct a robust and strongly supported timetree of jawed vertebrates using 7,189 nuclear genes from 100 taxa, including 23 new transcriptomes from previously unsampled key species. Gene jackknifing of genomic data corroborates the robustness of our tree and allows calculating genome-wide divergence times by overcoming gene sampling bias. Mitochondrial genomes prove insufficient to resolve the deepest relationships because of limited signal and among-lineage rate heterogeneity. Our analyses emphasize the importance of large curated nuclear datasets to increase the accuracy of phylogenomics and provide a reference framework for the evolutionary history of jawed vertebrates.
    • Single domain antibodies for the knockdown of cytosolic and nuclear proteins.

      Böldicke, Thomas; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2017-05-01)
      Single domain antibodies (sdAbs) from camels or sharks comprise only the variable heavy chain domain. Human sdAbs comprise the variable domain of the heavy chain (VH) or light chain (VL) and can be selected from human antibodies. SdAbs are stable, nonaggregating molecules in vitro and in vivo compared to complete antibodies and scFv fragments. They are excellent novel inhibitors of cytosolic/nuclear proteins because they are correctly folded inside the cytosol in contrast to scFv fragments. SdAbs are unique because of their excellent specificity and possibility to target posttranslational modifications such as phosphorylation sites, conformers or interaction regions of proteins that cannot be targeted with genetic knockout techniques and are impossible to knockdown with RNAi. The number of inhibiting cytosolic/nuclear sdAbs is increasing and usage of synthetic single pot single domain antibody libraries will boost the generation of these fascinating molecules without the need of immunization. The most frequently selected antigenic epitopes belong to viral and oncogenic proteins, followed by toxins, proteins of the nervous system as well as plant- and drosophila proteins. It is now possible to select functional sdAbs against virtually every cytosolic/nuclear protein and desired epitope. The development of new endosomal escape protein domains and cell-penetrating peptides for efficient transfection broaden the application of inhibiting sdAbs. Last but not least, the generation of relatively new cell-specific nanoparticles such as polymersomes and polyplexes carrying cytosolic/nuclear sdAb-DNA or -protein will pave the way to apply cytosolic/nuclear sdAbs for inhibition of viral infection and cancer in the clinic.
    • Identification of a Predominantly Interferon-λ-Induced Transcriptional Profile in Murine Intestinal Epithelial Cells.

      Selvakumar, Tharini A; Bhushal, Sudeep; Kalinke, Ulrich; Wirth, Dagmar; Hauser, Hansjörg; Köster, Mario; Hornef, Mathias W; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2017-01-01)
      Type I (α and β) and type III (λ) interferons (IFNs) induce the expression of a large set of antiviral effector molecules
    • Morphological, genomic and transcriptomic responses of Klebsiella pneumoniae to the last-line antibiotic colistin.

      Cain, Amy K; Boinett, Christine J; Barquist, Lars; Dordel, Janina; Fookes, Maria; Mayho, Matthew; Ellington, Matthew J; Goulding, David; Pickard, Derek; Wick, Ryan R; Holt, Kathryn E; Parkhill, Julian; Thomson, Nicholas R; HIRI, Helmoltz-Institut für RNA-basierteInfektionsforschung, Josef-Schneider-Strasse 2, 97080 Würzburg, Germany. (2018-06-29)
      Colistin remains one of the few antibiotics effective against multi-drug resistant (MDR) hospital pathogens, such as Klebsiella pneumoniae. Yet resistance to this last-line drug is rapidly increasing. Characterized mechanisms of col
    • Large-scale production of megakaryocytes in microcarrier-supported stirred suspension bioreactors.

      Eicke, Dorothee; Baigger, Anja; Schulze, Kai; Latham, Sharissa L; Halloin, Caroline; Zweigerdt, Robert; Guzman, Carlos A; Blasczyk, Rainer; Figueiredo, Constança; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2018-07-05)
      Megakaryocytes (MKs) are the precursors of platelets (PLTs) and may be used for PLT production in vivo or in vitro, as well as a source for PLT-derived growth factors. Induced pluripotent stem cells represent an unlimited cell source for the in vitro production of MKs. This study aimed at developing an effective, xeno-free and scalable system to produce high numbers of MKs. In particular, microcarrier beads-assisted stirred bioreactors were evaluated as a means of improving MK yields. This method resulted in the production of 18.7 × 10
    • Antibiotic use on paediatric inpatients in a teaching hospital in the Gambia, a retrospective study.

      Chaw, Pa Saidou; Schlinkmann, Kristin Maria; Raupach-Rosin, Heike; Karch, André; Pletz, Mathias W; Huebner, Johannes; Nyan, Ousman; Mikolajczyk, Rafael; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2018-01-01)
      Antibiotics are useful but increasing resistance is a major problem. Our objectives were to assess antibiotic use and microbiology testing in hospitalized children in the Gambia. We conducted a retrospective analysis of paediatric inpatient data at The Edward Francis Small Teaching Hospital in Banjul, The Gambia. We extracted relevant data from the admission folders of all patients (aged > 28 days to 15 years) admitted in 2015 (January-December), who received at least one antibiotic for 24 h. We also reviewed the microbiology laboratory record book to obtain separate data for the bacterial isolates and resistance test results of all the paediatric inpatients during the study period. Over half of the admitted patients received at least one antibiotic during admission (496/917) with a total consumption of 670.7 Days of Antibiotic Therapy/1000 Patient-Days. The clinical diagnoses included an infectious disease for 398/496, 80.2% of the patients on antibiotics, pneumonia being the most common (184/496, 37.1%). There were 51 clinically relevant bacterial isolates, More than half of the admitted patients received antibiotics. The reported antibiotic resistance was highest to the most commonly used antibiotics such as ampicillin. Efforts to maximize definitive antibiotic indication such as microbiological testing prior to start of antibiotics should be encouraged where possible for a more rational antibiotic use.
    • Successful Fecal Microbiota Transplantation in a Patient with Severe Complicated Infection after Liver Transplantation.

      Schneider, Kai Markus; Wirtz, Theresa H; Kroy, Daniela; Albers, Stefanie; Neumann, Ulf Peter; Strowig, Till; Sellge, Gernot; Trautwein, Christian; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany.
      infection (CDI) represents one of the most common healthcare-associated infections. Due to increasing numbers of recurrences and therapy failures, CDI has become a major disease burden. Studies have shown that fecal microbiota transplantation (FMT) can both be a safe and highly efficacious therapy for patients with therapy-refractory CDI. However, patients undergoing solid organ transplantation are at high risk for CDI due to long-term immunosuppression, previous antibiotic therapy, and proton pump inhibitor use. Additionally, these patients may be especially prone to adverse events related to FMT. Here, we report a successful FMT in a patient with severe therapy-refractory CDI after liver transplantation.
    • Properties of dimeric, disulfide-linked rhBMP-2 recovered from E. coli derived inclusion bodies by mild extraction or chaotropic solubilization and subsequent refolding

      Quaas, Bastian; Burmeister, Laura; Li, Zhaopeng; Nimtz, Manfred; Hoffmann, Andrea; Rinas, Ursula; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany.
    • Glycomics and Proteomics Approaches to Investigate Early Adenovirus-Host Cell Interactions.

      Lasswitz, Lisa; Chandra, Naresh; Arnberg, Niklas; Gerold, Gisa; TWINCORE, Zentrum für experimentelle und klinischeInfektionsforschung GmbH, Feodor-Lynen-Str. 7, 30625 Hannover, Germany. (2018-06-22)
      Adenoviruses as most viruses rely on glycan and protein interactions to attach to and enter susceptible host cells. The Adenoviridae family comprises more than 80 human types and they differ in their attachment factor and receptor usage, which likely contributes to the diverse tropism of the different types. In the past years, methods to systematically identify glycan and protein interactions have advanced. In particular sensitivity, speed and coverage of mass spectrometric analyses allow for high-throughput identification of glycans and peptides separated by liquid chromatography. Also, developments in glycan microarray technologies have led to targeted, high-throughput screening and identification of glycan-based receptors. The mapping of cell surface interactions of the diverse adenovirus types has implications for cell, tissue, and species tropism as well as drug development. Here we review known adenovirus interactions with glycan- and protein-based receptors, as well as glycomics and proteomics strategies to identify yet elusive virus receptors and attachment factors. We finally discuss challenges, bottlenecks, and future research directions in the field of non-enveloped virus entry into host cells.
    • Fatty acid metabolism in CD8 T cell memory: Challenging current concepts.

      Raud, Brenda; McGuire, Peter J; Jones, Russell G; Sparwasser, Tim; Berod, Luciana; TWINCORE, Zentrum für experimentelle und klinischeInfektionsforschung GmbH, Feodor-Lynen-Str. 7, 30625 Hannover, Germany. (2018-05-01)
      CD8
    • Type I interferon receptor signaling delays Kupffer cell replenishment during acute fulminant viral hepatitis.

      Borst, Katharina; Frenz, Theresa; Spanier, Julia; Tegtmeyer, Pia-Katharina; Chhatbar, Chintan; Skerra, Jennifer; Ghita, Luca; Namineni, Sukumar; Lienenklaus, Stefan; Köster, Mario; Heikenwaelder, Mathias; Sutter, Gerd; Kalinke, Ulrich; TWINCORE, Zentrum für experimentelle und klinischeInfektionsforschung GmbH, Feodor-Lynen-Str. 7, 30625 Hannover, Germany. (2017-12-21)
      Virus-induced fulminant hepatitis is a major cause of acute liver failure. During acute viral hepatitis the impact of type I interferon (IFN-I) on myeloid cells, including liver-resident Kupffer cells (KC), is only partially understood. Herein, we dissected the impact of locally induced IFN-I responses on myeloid cell function and hepatocytes during acute liver inflammation. Two different DNA-encoded viruses, vaccinia virus (VACV) and murine cytomegalovirus (MCMV), were studied. In vivo imaging was applied to visualize local IFN-β induction and IFN-I receptor (IFNAR) triggering in VACV-infected reporter mice. Furthermore, mice with a cell type-selective IFNAR ablation were analyzed to dissect the role of IFNAR signaling in myeloid cells and hepatocytes. Experiments with Cx3cr1 VACV infection induced local IFN-β responses, which lead to IFNAR signaling primarily within the liver. IFNAR triggering was needed to control the infection and prevent fulminant hepatitis. The severity of liver inflammation was independent of IFNAR triggering of hepatocytes, whereas IFNAR triggering of myeloid cells protected from excessive inflammation. Upon VACV or MCMV infection KC disappeared, whereas infiltrating monocytes differentiated to KC afterwards. During IFNAR triggering such replenished monocyte-derived KC comprised more IFNAR-deficient than -competent cells in mixed bone marrow chimeric mice, whereas after the decline of IFNAR triggering both subsets showed an even distribution. Upon VACV infection IFNAR triggering of myeloid cells, but not of hepatocytes, critically modulates acute viral hepatitis. During infection with DNA-encoded viruses IFNAR triggering of liver-infiltrating blood monocytes delays the development of monocyte-derived KC, pointing towards new therapeutic strategies for acute viral hepatitis.
    • Induction of CD4(+) and CD8(+) anti-tumor effector T cell responses by bacteria mediated tumor therapy.

      Stern, Christian; Kasnitz, Nadine; Kocijancic, Dino; Trittel, Stephanie; Riese, Peggy; Guzman, Carlos A; Leschner, Sara; Weiss, Siegfried; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2015-10-15)
      Facultative anaerobic bacteria like E. coli can colonize solid tumors often resulting in tumor growth retardation or even clearance. Little mechanistic knowledge is available for this phenomenon which is however crucial for optimization and further implementation in the clinic. Here, we show that intravenous injections with E. coli TOP10 can induce clearance of CT26 tumors in BALB/c mice. Importantly, re-challenging mice which had cleared tumors showed that clearance was due to a specific immune reaction. Accordingly, lymphopenic mice never showed tumor clearance after infection. Depletion experiments revealed that during induction phase, CD8(+) T cells are the sole effectors responsible for tumor clearance while in the memory phase CD8(+) and CD4(+) T cells were involved. This was confirmed by adoptive transfer. CD4(+) and CD8(+) T cells could reject newly set tumors while CD8(+) T cells could even reject established tumors. Detailed analysis of adoptively transferred CD4(+) T cells during tumor challenge revealed expression of granzyme B, FasL, TNF-α and IFN-γ in such T cells that might be involved in the anti-tumor activity. Our findings should pave the way for further optimization steps of this promising therapy.
    • Seqenv: Linking sequences to environments through text mining

      BRICS, Braunschweiger Zentrum für Systembiologie, Rebenring 56, 38106 Braunschweig, Germany.
      Understanding the distribution of taxa and associated traits across different environments is one of the central questions in microbial ecology. High-throughput sequencing (HTS) studies are presently generating huge volumes of data to address this biogeographical topic. However, these studies are often focused on specific environment types or processes leading to the production of individual, unconnected datasets. The large amounts of legacy sequence data with associated metadata that exist can be harnessed to better place the genetic information found in these surveys into a wider environmental context. Here we introduce a software program, seqenv, to carry out precisely such a task. It automatically performs similarity searches of short sequences against the ``nt'' nucleotide database provided by NCBI and, out of every hit, extracts-if it is available-the textual metadata field. After collecting all the isolation sources from all the search results, we run a text mining algorithm to identify and parse words that are associated with the Environmental Ontology (EnvO) controlled vocabulary. This, in turn, enables us to determine both in which environments individual sequences or taxa have previously been observed and, by weighted summation of those results, to summarize complete samples. We present two demonstrative applications of seqenv to a survey of ammonia oxidizing archaea as well as to a plankton paleome dataset from the Black Sea. These demonstrate the ability of the tool to reveal novel patterns in HTS and its utility in the fields of environmental source tracking, paleontology, and studies of microbial biogeography. To install seqenv, go to: https://github.com/xapple/seqenv. (c) 2016 Sinclair et al
    • Effects of Workflow Optimization in Endovascularly Treated Stroke Patients - A Pre-Post Effectiveness Study.

      Schregel, Katharina; Behme, Daniel; Tsogkas, Ioannis; Knauth, Michael; Maier, Ilko; Karch, André; Mikolajczyk, Rafael; Hinz, José; Liman, Jan; Psychogios, Marios-Nikos; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2016-01-01)
      Endovascular treatment of acute ischemic stroke has become standard of care for patients with large artery occlusion. Early restoration of blood flow is crucial for a good clinical outcome. We introduced an interdisciplinary standard operating procedure (SOP) between neuroradiologists, neurologists and anesthesiologists in order to streamline patient management. This study analyzes the effect of optimized workflow on periprocedural timings and its potential influence on clinical outcome. Data were extracted from a prospectively maintained university hospital stroke database. The standard operating procedure was established in February 2014. Of the 368 acute stroke patients undergoing endovascular treatment between 2008 and 2015, 278 patients were treated prior to and 90 after process optimization. Outcome measures were periprocedural time intervals and residual functional impairment. After implementation of the SOP, time from symptom onset to reperfusion was significantly reduced (median 264 min prior and 211 min after SOP-introduction (IQR 228-32 min and 161-278 min, respectively); P<0.001). Especially faster supply of imaging and prompt transfer of patients to the angiography suite contributed to this effect. Time between hospital admission and groin puncture was reduced by half after process optimization (median 64 min after versus 121 min prior to SOP-introduction (IQR 54-77 min and 96-161 min, respectively); P<0.001). Clinical outcome was significantly better after workflow optimization as measured with the modified Rankin Scale (common odds ratio (OR) 0.56; 95% CI 0.32-0.98; P = 0.038). Optimization of workflow and interdisciplinary teamwork significantly improved the outcome of patients with acute ischemic stroke due to a significant reduction of in-hospital examination, transportation, imaging and treatment times.
    • CRP-cAMP mediates silencing of Salmonella virulence at the post-transcriptional level.

      El Mouali, Youssef; Gaviria-Cantin, Tania; Sánchez-Romero, María Antonia; Gibert, Marta; Westermann, Alexander J; Vogel, Jörg; Balsalobre, Carlos; HIRI, Helmoltz-Institut für RNA-basierteInfektionsforschung, Josef-Schneider-Strasse 2, 97080 Würzburg, Germany. (2018-01-01)
      Invasion of epithelial cells by Salmonella enterica requires expression of genes located in the pathogenicity island I (SPI-1). The expression of SPI-1 genes is very tightly regulated and activated only under specific conditions. Most studies have focused on the regulatory pathways that induce SPI-1 expression. Here, we describe a new regulatory circuit involving CRP-cAMP, a widely established metabolic regulator, in silencing of SPI-1 genes under non-permissive conditions. In CRP-cAMP-deficient strains we detected a strong upregulation of SPI-1 genes in the mid-logarithmic growth phase. Genetic analyses revealed that CRP-cAMP modulates the level of HilD, the master regulator of Salmonella invasion. This regulation occurs at the post-transcriptional level and requires the presence of a newly identified regulatory motif within the hilD 3'UTR. We further demonstrate that in Salmonella the Hfq-dependent sRNA Spot 42 is under the transcriptional repression of CRP-cAMP and, when this transcriptional repression is relieved, Spot 42 exerts a positive effect on hilD expression. In vivo and in vitro assays indicate that Spot 42 targets, through its unstructured region III, the 3'UTR of the hilD transcript. Together, our results highlight the biological relevance of the hilD 3'UTR as a hub for post-transcriptional control of Salmonella invasion gene expression.